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1. Introduction

BEEE EEE

B @3l

Low-energy effective field theories on D-branes in closed string backgrounds have attracted

much attentions. The effects of the Ramond-Ramond (R-R) backgrounds are particularly

interesting for studying (non-)perturbative properties of supersymmetric gauge theories

and superstrings. For example, the constant graviphoton background, which comes from

the self-dual R-R 5-form field strenth wrapping three cycle in a Calabi-Yau manifold,

produces stringy corrections to the F-terms in effective theories [, fl]. Such corrections

play an important role in studying non-perturbative properties of supersymmetric gauge

theories [B, fl]. Closed string background is also interesting from the geometrical point of



view because it deforms the world-volume geometry of D-branes. A well-known example is
the constant NS-NS B-field, which leads to the noncommutative space-time realized by the
Moyal product [{, f]. The R-R background also deforms the world-volume geometry. In
fact, the constant self-dual R-R 5-form background on the fractional D3-branes introduces
non(anti)commutativity of (Euclidean) superspace [[—[f]. The deformed supersymmetric
gauge theories on non(anti)commutative superspace are studied extensively [L0—[L4].

Since superstring theory contains R-R fields, it would be interesting to study deformed
supersymmetric gauge theories in R-R backgrounds with various ranks and their (non-
)perturbative properties. Recently Bill6 et al [[l] studied the effective action on the frac-
tional D3-D(—1) system in the R-R 3-form background F with fixed (27a’)Y/2F in the
zero slope limit. They showed that the deformed action agrees with the instanton effective
action of A = 2 supersymmetric gauge theory in the -background [ at the lowest order
of the deformation parameter and gauge coupling constant. The Q2-background utilize the
integral over the instanton moduli space [fJ, [[§]. This type of deformation is not obtained
from the non(anti)commutative deformation of superspace. It is an interesting problem to
study geometrical meaning of this deformation.

In order to examine the effects of R-R background, the most direct approach is to calcu-
late the low-energy effective action on the D-branes from superstring theory. One can com-
pute the action of non(anti)commutative gauge theories directly from the effective action on
the (fractional) D3-branes [[[, [[4-[Ld], where interaction terms are obtained from the open
string disk amplitudes with insertion of graviphoton vertex operators. For example, the
deformed action of N’ = 1 supersymmetric gauge theories was derived from the fractional
D3-branes in type IIB superstring theories compactified on C3/Zy x Zo [[7]. The effective
theory is A = 1 super Yang-Mills theory on non(anti)commutative N = 1 superspace [[]].

In I8 [J we discussed the deformation of N' = 2 and N' = 4 super Yang-Mills
theories in the R-R background field strength of the form F*#4B_ where a and § label
the spinor indices of (Euclidean) space-time and A and B are internal spinor indices. We
classify the field strength into four types F(@P)AB) = Flabl(AB) = F(aB)AB] gnq FlosllAB]
Here (ab) ([ab]) denotes the (anti)symmetrization of ab. We call these deformations as
(S,9), (A,S), (S,A) and (A,A)-type, respectively, where the (S,S)-type deformation with
fixed (2ra’)?/2F corresponds to the case studied in [[4]. In [[§], we studied the first
order correction to N' = 2 super Yang-Mills action from the (S,S)-type background with
fixed (271'0/)3/ 2F. We showed that deformed theory agrees with ' = 2 super Yang-Mills
theory on non(anti)commutative V' = 2 harmonic superspace [[1]-[[J]. In [[9], we studied
the first order correction to N' = 4 super Yang-Mills theory in (S,S)-type background
with fixed (2ra’ )3/ 2F. By restricting the deformation parameter to the special case, the
deformed Lagrangian is reduced to the one in non(anti)commutative N' = 1 superspace.
Therefore it is natural to think that the (S,S)-type deformation with fixed (27a’)%/2F
corresponds to the non(anti)commutative deformation of N (< 4) extended superspace
at full order in deformation parameter. On the other hand, the index structure of the
(A,A) type background suggests that it corresponds to the singlet deformation of extended
superspace [[[3, (], although we need to take into account the backreaction to the closed
string backgrounds [[§]. The (S,A) and (A,S) type deformations with fixed (2ma/)3/2F



would also provide nontrivial deformation of supersymmetric gauge theories, which cannot
be realized as non(anti)commutative superspace. However, it is difficult to compute the
deformed actions due to its complicated structure.

As shown in [[J], the (S,A)-type background with fixed (2ra’)Y/2F provides nontrivial
deformation of N = 2 super Yang-Mills theory, which is useful for studying instanton
calculus. Hence it would be an interesting problem to work out the deformations by the
constant R-R backgrounds with fixed (2ma/ )1/ 2F and their non-perturbative properties.
The purpose of this paper is to study the deformation of super Yang-Mills theories with
N = 2 and 4 supersymmetries corresponding to the (S,A) and (A,S)-types background
with fixed (2ra’)V/2F.

We will calculate disk amplitudes with one R-R vertex operator and derive the effective
action on the (fractional) D-branes. For N/ = 4 case, we will show that the bosonic
action agrees with the Chern-Simons action with the (dual) R-R potentials [1]. The
deformed scalar potential has nontrivial minima. Actually, for both (S,A) and (A,S)-type
deformations of N’ = 4 super Yang-Mills theory, we find a fuzzy sphere configuration 23, [[9]
for adjoint scalars. In general number of unbroken supersymmetries are restricted on the
D-branes in the presence of R-R backgrounds. We will examine invariance of the deformed
Lagrangian under remaining supersymmetries. The deformation of N/ = 2 super Yang-
Mills theory is obtained from A = 4 theory by the reduction due to the Zs orbifold of
C2. For both /' = 2 and N = 4 cases, we are able to explore geometrical interpretation
of this deformation in terms of superspace formalism. We will show that (S,A) and (A,S)-
type deformations with fixed (2wa/ )1/ 2F are realized by introducing superspace dependent
coupling constants. This is in contrast with the case with the (S,S)-type deformation with
fixed (2ma’ )3/ 2 F, where its deformation is realized by the star product for supercoordinates.

This paper is organized as follows: in section ], we calculate the (S,A) and (A,S)-
type background corrections to N/ = 4 super Yang-Mills theory from the open string
disk amplitudes with one closed string R-R vertex operator. Unbroken supersymmetries
are classified in terms of the rank of deformation parameter in some cases. The fuzzy
sphere configurations of vacuum in the deformed theories are investigated. In section [, we
confirm that the R-R correction terms in (S,A) and (A,S)-type deformed N = 4 theories are
consistent with the Chern-Simons term of the D-brane effective action coupled to the R-R
potential. In section [, we study the (S,A) and (A,S)-type deformations of N' = 2 super
Yang-Mills theory and its deformed supersymmetry. In section f] we rewrite the deformed
action in terms of N' = 1 superspace and show that (A,S)-type deformation is regarded as
the mass deformation of super Yang-Mills theory. Section ] is devoted to conclusions and
discussion.

2. Deformed N = 4 Super Yang-Mills theory in R-R 3-form background

In this section we study the low-energy effective action on D3-branes in type IIB super-
strings from the disk amplitudes with one R-R vertex operator of (S,A) or (A,S)-type.
Here we use NSR formalism and introduce spin fields [23, P4] to represent space-time
spinor. The low-energy effective field theory on N D3-branes are described by gauge fields



A, (p = 1,2,3,4), six real scalars ¢® (a = 5,...,10) and Weyl fermions A, and A%,
(A = 1,2,3,4), which belong to the adjoint representation of gauge group U(N) . We
denote T as the basis of U(N) generators normalized as Tr(7"™7T"™) = k6™ with constant
factor k.

The vertex operators for these fields are [24]

Au(p )1/1“( )e f¢(y)ei\/2m’p-X(y)’

ViV (yip) = (2ra)z

m

V2 (yip) = 2i2ra") 3 Au(p) (0X*(y) +i(2ra)ip- vy (y) ) V2P XD (21

)

VI :p) = (ama)} P9 (oot i ometn X,

’ V2

VIO (y:p) = 220" 3 (p) (0X°(y) +i(2ma) p -y (y) ) VX0 (2.)
Vi P (ip) = (2ma) 1A (0)Sa(y) Sa(y)e 200V XW)
Vi P (yip) = (2ma))iRaa(p)S* (y) 57 (y)e 300 VIrr X W), (2.3)

Here (XM (2),9™(2)) (M = 1,...,10) are free bosons and fermions on the worldsheet,
where p labels the worldvolume coordinates on D3-branes and a coordinates transverse to
the worldvolume of the D3-branes. S, and S4 denote the spin operators for space-time
and internal space parts. ¢ is a free boson obtained from the bosonization of the bosonic
ghost (8,7). For gauge fields and scalar fields we use two physically equivalent vertex
operators with picture number —1 and 0. For fermions we use the vertex operator with
picture number —1/2.

The disk amplitudes in the zero-slope limit o/ — 0 reproduce the action of NV = 4
super Yang-Mills theory. It is convenient to introduce auxiliary field vertex operators in
order to reduce higher point amplitudes to the lower ones [F, B6, [[§, [[9). These are given
by

1 . 7
Vis,(4:p) = 5 (2ma) Hyu (p)i# " (y) eV >me v X W),
Vi) (yp) = 2(2m0) o (p)#y° (y) e me v X ),

VA (050) = — 5 2! Hualp) 0P () 27 X0, 2.4)

Note that these vertex operators are not BRST invariant. The total Lagrangian includes
only the cubic interaction terms and becomes

1 1 1
Lnes = ——Tr 50,4, —8,,AH)6“A”+Z'6HA,,[A“,A”]+§HCHC+ Honf,, A", A”]}

1 1
- Tr | =HH, —H
ngM I _2 abddgp + \/5 ab[‘pm Qpb]

1 1 1
L 2 Tr| - u‘paaﬂﬁpa + iau@a [A'u7 Spa] + _HuaHﬂa + H;w[Aﬂa (Pa]:|
9YyM |12 2
1 B -1 - . 1
— T iN "Dy a—= (29 Raalpa, A%] -5 (2%) 45 A% ¢, Af]] . (2.5)
9YyM L 2 2



2

Here the four-dimensional Euclidean sigma matrices are o, = (it!,i72,im3,1) and o, =

1 —ir2,—ir3,1), where 7% (i = 1,2,3) are the Pauli matrices. The six-dimensional

(=it
sigma matrices are given by

¥ = (7737 _1.7737 7727 _iﬁ27 7717 ”71) ) ia = (—7737 _2‘77’3’ _7727 _1.7727 _7717 iﬁ1)7 (26)
where a =5, -+, 10. nfw and ﬁfw are 't Hooft symbols, which are defined by o, = %nfwTi
and 0, = %ﬁfwﬂ. After integrating out the auxiliary fields, we get the quartic interaction
terms including the gauge fields and scalars, which is given by

0) 1 1 v n A A VG 1 2
ﬁg\/=4 - kg2 Tr [_ZFM (Flw + FW) —iA (UM)QBDMABA 9 (Dyua)
1 - — 1 - 1
+3 (5 Raalion K] + 5 (59) g A" A2+ Zlewia?] - 27)

We call Eﬁ\(}): 4 undeformed Lagrangian.
We then introduce a R-R closed string vertex operator

VIR (2 2) = (2ma! ) FUIAB (5, (2)84(2)e T EXS5(2)Sp(2)e | (28)

with constant F*%4B and insert this vertex operator in a disk amplitude. Here we have
used the doubling trick for the spin fields in (R.§) and have replaced the right-moving part
in the R-R vertex operator by Sz(2)Sp(z)e” 2%(3) The disk amplitude is now given by

NI
~—

(Zly Z_l) o >a
(2.9)
is the open string vertex operator corresponding to a field X with picture num-

(-372) —Cp /Hz 1 dyi TT5Z, dz;dz;
2

(a1) (1) TG
«VXI Ve dVeka <VX1 (y1) Ve

where V)((i’“ )
ber g, Cp, = m 77 % is a normalization factor and dVog¢ is an SL(2, R)-invariant
volume factor to fix posmons of three coordlnates in y;, z; and z;. The sum of picture
numbers in a disk amplitude must be —2.

The constant R-R field strength .7:0‘5‘43 is decomposed into the types F(@P)(AB)
FlaBl(AB) = FaB)AB] and FleBlABL which are called (S,S), (A,S), (S,A) and (A,A)-type,
respectively. It is shown in [IJ] that the (S,S)-type background corresponds to the R-R
5-form and the (A,S) and (S,A)-types to 3-forms and its dual 7-forms, the (A,A)-type to
the 1-form and its dual 9-form. In order to discuss the zero-slope limit, we need to specify
the scaling condition for F. In the previous paper [[J], we have studied the (S,S)-type
deformation with the scaling condition (27a)3/2F fixed, which would correspond to the
deformation of underlying N’ = 4 extended superspace.

In this paper we will consider the (S,A) and (A,S)-type deformations with different
scaling condition (2mwa’ )1/ 2F fixed. These types of deformations cannot be realized by
introducing non(anti)commutativity of superspace and give new types of deformed theories.
The scaling condition F ~ (a’)~'/2 is particularly interesting because it provides the (S,A)-
type deformation of D(—1)-instanton effective action similar to the Q-background in N' = 2
super Yang-Mills theory [B], [[§]. We will consider the effects of the R-R 3-form field strength
of (S,A) and (A,S)-types to the low-energy effective Lagrangian in the N' = 4 case.



2.1 (S,A)-type deformation
2.1.1 Lagrangian

Firstly we discuss the (S,A)-type deformation of ' = 4 super Yang-Mills theory. For the
(S,A)-type background F (@B)IAB] we find that the disk amplitudes which are nonzero in
the zero-slope limit are given by (VaV,Vr), (Va,.V,oVr) and (VAVAVE)). The explicit
computations of these amplitudes are essentially the same as in [[[9]. We do not repeat
detailed calculations here. The first two amplitudes become

— ~1/2,— N Am N S
(VA" OVE D @)V 2T = () (0 Dagipna v (91)(5) apoa(22)
YM
x (2ma/ )2 FleB)AB] (2.10)
and
_ _1/2.— 11 4rn y -
W p)VED )V 2D = (i) Tr[(0" )ag Hyu (01) (E%) aBpa(p2))
222ngM
x (2ma/) 2 FeP)AB], (2.11)

The interaction terms corresponding to these amplitudes are given by

211

Tr |:( )aﬁ <8[MAV} - EH;U/) (EQ)ABSDUL:| (271'0/)%‘7:((15)[143}. (2.12)
gYM 2

The third amplitude is
47

kg3
x (2o )2 F@AICD], (2.13)

(A Vi o 2T =

Tr [6ABCDA (Pl)AﬁB(p2)]

Introducing symmetric factor in (2.13) and adding the terms (R.13), we obtain the inter-
action term including auxiliary fields. Integratmg out the auxiliary fields, we find that the

deformed Lagrangian is 43): 4+ Eg) A) Eg) A) , where
1
Lishy = o LU [iFjwpa] O — Tr [eapcp A AP C@PICPL (214
Fom 9YM
E(Q) — l 1 TI' [(pa@b] Cﬂyac,ul/b. (215)

(S,4) 9 kg%(M
Here we have defined the deformation parameter by

cHe = —27T(27To/)%(0‘“’)a5 (EG)AB FlaB)AB]
CBAB] = _on(2rq/)z FAIAB], (2.16)
The O(C?) term EE? A) arises from the integration over the auxiliary field. It is possible

to construct higher order O(C") terms from the disk amplitudes. It is not clear that
these amplitudes are reducible or not. For example, at order C2, there is an amplitude



(Va,,VFVz)), which might change the coefficients of the ¢?C? term in Eg? Ay However, as
(2)

we will see in section 4, the reduction from N = 4 to N/ = 2 theory shows that E(& A) gives
the O(C?) term of the V' = 2 theory, where the O(C?) term is exact. Moreover, as we see
in the next subsection, the O(C?) deformed Lagrangian is invariant under O(C) deformed
supersymmetry for some C. This is rather different from non(anti)commutative N' = 2
supersymmetric gauge theory, where deformed supersymmetry transformation contains
higher order contributions of the deformation parameter [R3]. In order to cancel this
deformation transformation, it is necessary to introduce infinite number of interaction
terms. But for the (S,A)-deformed Lagrangian we do not need to introduce such a higher

order counter term. These properties suggest that the deformed Lagrangian L'J(\O/): 4+£Eé) AT

L'E? A) is an exact Lagrangian, which would be difficult to prove in the NSR formalism.

2.1.2 Deformed supersymmetry

We examine supersymmetry of the deformed Lagrangian. The Lagrangian Eﬁ\(}): JOof N =4
super Yang-Mills theory is invariant under on-shell NV = 4 supersymmetry, which is

50A;L = i(gAJuAA + g_A&,uAA)a

5OAA = UMVSAF;W + (Ea)ABUMgBDu‘Pa - i(zab)ABgB[@aa (Pb]7
5OAA = 54W§AF;W + (ia)ABﬁugBDuSDa - i(iab)AB _B [Spaa SDb],
Soa = 1(§1(Za) aBA” +€a(Sa) P Ap). (2.17)

The deformed Lagrangian Eﬁ\(}): 4+E%) A) +LE§) A) +--- is not invariant under this supersym-

metry. We explore deformation of supersymmetry under which the deformed Lagrangian
is invariant. The deformed supersymmetry transformation § can be expanded in the form
0 =68+ 01+ -, where 6, is the variation including of the n-th order power of C. The
deformed supersymmetry 4, is determined recursively by solving the conditions [2§, ]|

LN, + 0L 5y =0, LY., + 0L ) +0LE ) =0, (2.18)

and so on. However, we find that there is no solution of (P.1§) for generic C. In the first

equation of (R.1§), a part of the variation 505({; A) is canceled by deforming the supersym-

metry transformation of A4 as
SAY = —ipaClpac €1 (2.19)

Then, at the first order in C', we have

0 1 1 afB)a /v v
(51£§\[):4 +5O£ES?A) = kg%MTI‘ |:—C( #) (EQ)ABSZ?FMV(OJL AB)Oé
—iC () £ (Sa) BotS [0, e AG ]
1 _ _
too T [_FquW%A(Ea)ABAB
kgyn
+ C(aﬁ)a@b(ib)BA(Ea)AC(UMgC)aDMAg] ' (2:20)



rank of C'(@A)12]
0 1 2
N=(22) | N=@3/21) | N=(11)
rank of CBY | 1 | N =(3/2,1) | N =(1,0) | N =(1/2,0)
N=(11) | N=(1/2,0) | N=(0,0)

Table 1: The number of unbroken supersymmetry in A" = 4 SYM with (S,A)-type deformation in
the case where only C(@®12l and C(@PB4 are nonzero.

In order that the supersymmetry variation (R.2() vanishes, we have to require
eapcpCPBAR =0, COMABIE, 5 =, (2.21)

which have only a trivial solution ¢ = & = 0 for generic C. The variation of the second
order in C' also vanishes by the same condition without introducing d. For special C' such
that (P.21) have nontrivial solution, the theory is invariant under the deformed supersym-
metry & = dp + 61 at the second order in C. Although we do not fully classify the unbroken
supersymmetries in this paper, we illustrate the number of deformed supersymmetry in the
case where only C(@[12 and C(@B4 are nonzero. From (B:21)) the number of unbroken
supersymmetry depends on the rank of C(@®)12 and C(@AB4 We summarize the number
of unbroken supersymmetries in table [, where N' = (p/2,¢/2) denotes supersymmetry
with p chiral and ¢ anti-chiral supercharges.

2.1.3 Deformed scalar potential

In the case of non(anti)commutative N/ = 4 super Yang-Mills theory, fuzzy sphere config-
uration with the constant U(1) gauge field background is found [, [[]. In the deformed
Lagrangian (.14)-(R.15), the scalar potential receives also corrections from the R-R back-
ground. We investigate how classical vacua configuration is deformed.

The scalar potential reads

1 1 1
V(p) = ———Tr|~[¢a, pp)* + = (C*p,)?|. 2.22
(9) =~ T Flowl + 5(C00) (2.22)
The stationary condition becomes
ov
—% = [%, [Pa: %]} + CuaC"pp = 0. (2.23)

We explore the solution with the fuzzy sphere ansatz such as

[pa, b] = ifabetpe, (2.24)

where fu. is a constant antisymmetric tensor. If we plug (2.24) into (2.23), we obtain

fabcfbcd = C,uuacwél- (225)



Hence (R.24) is a solution of (£.29) if (R.2) is satisfied. We regard C*"; as a 6 x 6 matrix
of which rows and columns are specified by pv and a respectively. One can find the rank
of C* is three due to the self-dual condition. The rank of C’WCLC“ l;l is also three. Then
we can take the basis such that the upper-left 3 x 3 submatrix of CWGC“ ';l is only nonzero.
The solution becomes

[Spa, Qpb] = Z'fachDc for a, ba c= 55 6’ 75 (226)
2.2

[Pas o0] =0 otherwise, (2.27)

where fgp is totally antisymmetric tensor. After the appropriate rescaling of ¢,, (R.24)

becomes the SU(2) algebra.! Therefore (P.26) gives the fuzzy S? solution. We note that
this fuzzy sphere configuration arises without the constant U(1) gauge field strength back-
ground, which is different from non(anti)commutative case [23, [[9).

2.2 (A,S)-type deformation
2.2.1 Lagrangian

In the (A,S)-type background, nonzero amplitudes with one graviphoton vertex operator
are given by (Vu,, V,VF)) and (V3VzVF)), which are evaluated as

(0) (-1) (-1/2-1/2)y _ L m Saybse
Vi, (VD o)V ) = e [ S an ) p2)|
x (2w )2 FloBl(AB) g o (2.28)
and
— _ _1/9.— 4y - —
«VA( 1/2>(p1)vﬂ( 1/2)(p2)vf( 1/2,-1/2)y kg%MTr [Aaa(p1)A(p2)]

x (2ma/)2 FleBAB) . o (2.29)

After including the symmetric factor 1/2! for the second amplitude, we find that new
interaction terms induced by the (A,S)-type background are

1

1 .
- Tr [AgaA%] CAB) 2.30

2

Tr (iazbic)ABHab(pc] C(AB) +
Iym

where

CAB) = _ri(2ma/)2 FloAlAB)g . (2.31)

After integrating out the auxiliary fields, the deformed Lagrangian is written as Eﬁ\(}):4 +

L'&),S) + [’EQA),S)’ where

1 \a \C 2 i e
583,3) = T2 Ar [(E DY )ABsoasobsoc] 4B 4 T Iy [Aaaly] OB (2.32)

Y 9vyMm
1 1 _ _ _ _
EE?S) T [(EaZbEC)AB(Eazbzd)CDsﬁcst} CUB) (D), (2.33)
; 4 kg

'We assume that fabe are real.



Here E&),S) arises by integration over the auxiliary fields. In contrast to the (S,A)-type
deformation, there are no other nonzero open string disk amplitudes at O(C?) in the case
of (A,S)-type background. Therefore the O(C?) term is exact although there might exist
higher order deformed terms.

2.2.2 Deformed supersymmetry

We study supersymmetry of the deformed Lagrangian. As in the case of (S,A)-type defor-
mation, we expand supersymmetry transformation as § = dg+ 1 + - --. Then the variation
of the deformed Lagrangian at the first order in C' is

S0, + el =

——Tr [6¢C<AB>(iab)BCaACDE§EAD —4CUBIE 5 Ry F,
IyMm

+iCUB) (59 £ (26c A g — 6E4AC) [P, 03] | (2.34)
where we have deformed the supersymmetry transformation of A4 as
AN = —4iCAB) (29 g €C p,. (2.35)
The supersymmetry variation (R.34) vanishes if C(A5) satisfies

C(AB)(iab)BcﬁACDEﬁE =0,
CUBgp =0, CcUB)(m®) Fén =o0. (2.36)

(AB)

The variation of second order in C' also vanishes by the same condition without in-

troducing d,. If the rank of C45) is one, we have one nonzero 4 and no nonzero &4 as
the solution of (2.36]). Then the supersymmetry is broken to A = (1/2,0). If the rank of
C4B) is more than one, all supersymmetries are broken.

2.2.3 Deformed scalar potential

In the case of (A,S)-type deformation, the potential for the adjoint scalar field is

1

—V(p) = Z[@a,%]z + (29%°5°) A ppapp.CAP)

1 _ _ _ _
+5 (8725 4p(S° 2 ) eppepaC AP COP). (2.37)

The stationary condition is

B ov
Opq

3 N \C
= (@b, [Pas )] + 5(2 565¢) 4 CAB) [y, 0]
+%(202bic) A(2Pesd) o pCAB CCP) g, — 0. (2.38)

This equation has a fuzzy sphere solution. Let us assume that ¢, satisfies the commutation
relation

[Pas ob] = i fabetpe, (2.39)
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where f%¢ = (22%0%¢) ,5CAB). The constant « is fixed by the equation

3. 1
<a2 - 510[ - 5) fabcfbcdgpd =0, (240)
which are obtained by the substitution of (R.39) into the stationary condition (R.3§). The
equation (R.4() admits nonzero solutions. Therefore we can formally obtain the nontrivial
fuzzy sphere solutions. However, fg. is subjected by the (imaginary) self-dual condition
i

fabc = ggabcdeffdef- (241)
For instance, if f5¢7 is real, fgg 10 is imaginary. We should consider the fuzzy sphere
configuration in the complexified space of the scalar fields.

3. Non-abelian Chern-Simons term

In this section, we will check that the new bosonic interaction terms arising from the (S,A)
and (A,S)-type backgrounds are consistent with the non-abelian Chern-Simons term in the
D-brane effective action [RI]. The Chern-Simons term is written as

Sos = STy /M S Pl A AT (3.1)
4 n

Here A = 27a/, A" is an n-form R-R potential, p3 = ﬁ is the R-R charge of a
D3-brane. The integral is performed over the four-dimensional D3-brane worldvolume
My, F = %Fw,dx“ A dx¥ is a U(IV) gauge field strength which lives in the D3-brane
worldvolume and ¢, is U(V) adjoint scalar fields. The symbol P denotes the pull-back of
ten-dimensional fields and i, is the interior product by ¢®. STr is a symmetric trace of U(NV)
gauge group. In the following, we will take a static gauge in which the four-dimensional
part in ten-dimensional space-time is identified with the worldvolume direction.

3.1 (S,A)-type deformation

For the (S,A)-type background, there exists the R-R 3-form and its dual 7-form field
strength with the index structure

Fova = Ao + O Ay,
f;u/abcde = a[u-Ay]abcde + 8(a~’4bcde);u/7 (32)

where p,v = 1,...,4 are worldvolume directions and a,b,...,e = 5,...,10 are six-
dimensional directions transverse to the D-brane worldvolume.

First, we calculate contributions from the 3-form field strength with the 2-form poten-
tials A, Auq. The Chern-Simons term is
A

=Byl [ PlAD), FLeodiy. (3.3)

H3 iIN2y 2 (27 AF
—STr/ Ple"Me X2 A e
k My k 4 My

(S,A)
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Here |(s,a) means the restriction of the R-R indices to (S,A)-type deformation (B.9). The
pull-back is given by

oxMoxN
P[A(Q)]MV - .AMN ({91'“ W - AMV + QAAuaDV(Pa- (34)
Here XM (M = (u,a) = 1,...,10) are ten-dimensional space-time coordinates where X

are identified with adjoint scalar fields in N' = 4 vector multiplet through X* = A\p,. Note
that the pull-back is covariantized with respect to U(IN) gauge group. The potential has
to be expanded by the fluctuation ¢, such that

A = A + 2p:0.AY)

(18]

Aua = AW, (3.5)

Here AELO,,),AEL%) are 2-form potentials evaluated at ¢, = 0. In the following we omit the
superscript (0). After using Bianchi identity e##? D, F,, = 0 and partial integrations, we
find

BS gy P[ei)‘i?ﬂ)\%.%l@)]e)‘F
k My

1
= 5 /d4:c Tr (o F)u] (271'0/)% mra. (3.6)
A 2kgym I

By identifying (2o’ )%.7:‘“’“ = 2¢C** this Chern-Simons term precisely agrees with the
O(C) part of the (S,A)-deformation term (R.14).

Next, we calculate contributions from the 7-form part, which take the form

@STr/ P[eiAii)\%A((i)]e)\F — @STr/ [iAgP[iiA(6)] — 1)\%]3[(12)2/‘(6)]
k My k My 2 v

7 11 .9

s PIEP A A F A F] ,(3.7)

AF — ”

where A®) takes the form either Ayabede OF Aypapea. After evaluating STr, pull-back, and
expansion in fluctuation, we find that (B.7) becomes

3

A3 V i 1

[ / d41' P78 Tr [ZAabcduuwbﬁpaDpQOcDagod - gAabcduV¢d<pc<pb<pan0:|
9YM J My

N

_|_
kg%M

) )
/ d4x5“l/poSTr |:éAabcdeuSDb@aDu@ch@dDa@e + Zae-AabcduuSDpraSDerSDcDoSDd
My

1 1
_gaeAabcdpu(Pd(Pc(Pb(PaQOera - ZAabcde;L(Pd@c@b(PaDuwera} .
(3.8)
The A2 term vanishes by the partial integration. The A2 term will not contribute to the
deformation term in field theory limit in our scaling A2 F = fixed. Thus we see that our

open string calculation is consistent with effective action of D-brane in the presence of R-R
background for the (S,A)-type deformation.
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3.2 (A,S)-type deformation
For the (A,S)-type deformation, the R-R 3-form and its dual 7-form field strength with
index structure are given by

Fabe = a(a-Abc)’

f;u/paabc = a[uAupa]abc + a(aAbc),ul/po- (39)
The Chern-Simons term corresponding to the R-R 2-form potential is

5

N A3
%STr P[em?ﬂ)\%A@)]B)‘F = %%STT/ d*z Oc AP Dppa Doy Fpee!??
My (A,9) Iym My
2)‘% 4 uvpo
-+ 5 STr d*zx 8cu4ab90b90agch,uqu05 .
8kgyn Ma

(3.10)

After evaluating STr and performing partial integrations, we find that this becomes

1
12kg%,

/ d*x Tr [gpaDugobDygochge“"po} (27?0/)% ube
My
7
24kg%M

[t T [ uprpcu e 2ra) e (311)
My

Those terms vanish in the zero-slope limit o/ — 0 with fixed A2 F. On the other hand, the
7-form part is calculated by the same way as

. ; 1 -
%STr P[eZ)‘li)\%A@]e)‘F =-3 24' o2 / d*z Tr [gpaapbapc} (2770/)%.7-}5,0.
My (A,9) T RIyM I My
(3.12)
Here we have defined
ﬁabc = fabc,ul/pog'uypo- (313)

This term precisely agrees with the (A,S)-type deformation term (R.33) at linear order
in deformation parameter with the identification —ﬁ(%ro/ )%fabc = (Zexbye) ,5CAB),
Therefore the (A,S)-type deformation is related to the dual 7-form R-R field strength.

4. Deformed N = 2 super Yang-Mills theories

So far we have studied the deformation of A" = 4 super Yang-Mills theory in the R-R 3-
form background. In this section we study deformed A" = 2 U(N) super Yang-Mills theory
in the (S,A) and (A,S)-type backgrounds. To realize N' = 2 U(N) supersymmetric gauge
theory, we use N fractional D3-branes located at the singularity of the orbifold C2?/Z, [B(].
Since the orbifold projection restricts R-symmetry group SU(4) to SU(2), the internal spin
fields S4 become the doublet S; (i = 1,2) of SU(2). The massless fields on the fractional
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D3-branes are gauge fields A,, Weyl fermions Al and a complex scalar ¢, whose vertex
operators are obtained by the orbifold projection and are defined in [I§. The undeformed
Lagrangian is given by

1

1 1 1. -
£ - Tr|—-F,, F* — ZF, F" — D,oD"G — ~[p. 3]
N=2 = T | = H 1 upD'o = Sle, ol

o)+ e 8| )

@
=
;
-
\]

We introduce the R-R vertex operator of the form
VEYR () 2) = (2ra)) FoB [sa(z)s<—>(z)si(z)e—%wsﬁ(z)s(—)(z)sj(z)e—%qﬁ(‘?)} (4.2)

The R-R field strength can be decomposed into F(@d)@) Flab)lid] = Flepli) ang Flesllis]
which corresponds to the R-R 5-form, 3-form (7-form), 3-form (7-form) and 1-form (9-
form) field strength respectively. We calculate the deformed Lagrangian in the (S,A) and
(A,S)-type deformations with the scaling condition F ~ (o/)~/? as we did in the N’ = 4
case.

4.1 (S,A)-type deformation

The N = 2 (S,A)-type deformation was studied in [[[§]. The nonzero disk amplitudes which
contain single F @MWl are (V4V;Vr) and (Vi ,VaVr). The first amplitude is evaluated
as

_ _1/92 — 4+/2 »
WO VD o)V 2Dy = 2T (o) i A, (1) ()] (2l EF ey

v kg

(4.3)

Combining the result of the second amplitude, we get the interaction term
—(—i) \/Q_WTr Ka[MAV] —~ EHW> @(JW)W] g1 F(@B)lid], (4.4)

kg 2
After integrating out the auxiliary fields, we find

£+ LD, = Ty |iF,, g0 + = (pCH)? 4.5
(S,A)+ (SvA)_% Tty "’5(%0 ) ) ( . )

where we have defined C* = 2v/2mi(c#),pe;; F @], Since at order C2 there are no
other disk amplitudes which contribute to the Lagrangian, the deformed Lagrangian is
exact up to higher order corrections in C.

The deformation term (@) can be also obtained by the reduction from N = 4 to
N = 2 by the Z5 orbifold projection, which is given by

Alt=0for A=3,4, ¢,=0fora=7,8,09,10, (4.6)
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rank of C'(@f)
0 1 2
0| N=(L1) |N=(L0) |N=(10)
rank of C(*%) | 1 | N = (1/2,1) | N = (1/2,0) | N = (1/2,0)
2| N=(0,1) |N=(0,00 |N=(0,0)

Table 2: The number of unbroken supersymmetry in A/ = 2 SYM with (S,A)-type deformation.

and only C@®)2 and C@AB4 are nonzero [[J. Under the reduction, the deformation

term becomes

1 2 v VAl vV = 211%
Ll + L) = ngMTr (O + O ) Py = <O N i+ 5(C 5+ O
(4.7)

where C* and C* are defined as

cm = 2y2icr i o = —2/2icm Y, (4.8)
and we have used
1 1
= —ipg), P=— + 1pg). 4.9
P \/5(905 ZQDG) '2 \/5(905 Z906) ( )

In the case of C* = 0, (7)) is reduced to ([£§). The deformation parameter C*" is referred

as the graviphoton-like vertex operator in [[Lg].

We examine the deformed supersymmetry of the Lagrangian E(O) 5+ EEU A) Eg) A)

The deformed supersymmetry transformation is obtained from the Zs projection in N' = 4
theory, which is given by

6A, = i(o, N + &5 ,A"),
SAT = o* ¢ (B — i(CM 3 + CM9)) + V2io"E' D — i€ [0, &),
§A; = " & Fyy — V2i6"6D,p + i&ilp, @,
Sp = V26N,
85 = V2EA,;. (4.10)

The deformed Lagrangian is invariant under ({.10) if ¢ and € satisfy

C’(aﬁ)glﬁ -0
& =0or C9 =, (4.11)
where C(@8) = QﬁiC(aﬁ)[m] CB) = —92./2iC@®B4  Ag in the N = 4 case, we can

classify the unbroken supersymmetries, which are summarized in table f.
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4.2 (A,S)-type deformation

Next we consider the (A,S)-type deformation of N/ = 2 super Yang-Mills theory. At the
first order in F, the nonzero amplitude is possible only for

WP 0V P Vi) = B R A% )] el F T
YM
(4.12)
The interaction term is given by
1 1 1 1 ij
L) = T Tr [Ai(@) A% ()] 9. (4.13)
9ym

Here C4) = —27Ti(27ra’)%.7:[aﬁ](ij)aa5.
As in the case of (S,A)-type deformation, We can obtain deformed Lagrangian from the
N = 4 one by the reduction. The deformation parameter CA5) takes the block diagonal

form:
1 (cl) o .
CHUB) = 3 < 0 C@ﬁ’)) . 4,j=1,2, 1,5=34. (4.14)
Then the deformation terms become
(1) @ _ 1 DR R ij ~2 i 2
£(A,S) + ﬁ(A,S) = kg%MTI‘ {C( J)Ao'ﬂ'Aj - C( ])C(l])(p - C( ])C(;j)tp ] (415)

We note that only the O(C?) terms in (.15) are allowed to exist at this order due to
the charge conservation of vertex operators in the disk amplitudes, which are given by
(VoVaVEVE), (VoV,VEVE). Here Vz is the closed string R-R vertex operator corre-
sponding to Cil,

The deformed Lagrangian is invariant under the supersymmetry transformation

§A, = i(&o A + &5, A",
SA" = 0" €' Fpy + V2ic"E' Dy — i€, §] — 4v20C g5,
6N = " EF,, — V2i5" D@ +i&ilp, @),
5o = V28N,
5o = V28N, (4.16)

if € satisfies
Clg; = 0. (4.17)

Hence the theory has AV = (1,0) supersymmetry in the generic case. But it is enhanced to
N = (1,1/2) supersymmetry if the rank of C*) is one.

4.3 Comments on the reduction to /' =1 theory

We are able to discuss further reduction to deformed N' = 1 theory from the orbifold
R®/Z5 x Zy [BI]], which can be done by restriction ¢, = 0 (a = 5,...10), A23* = A234 =0
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in /' = 4 theory. The deformation parameter F*34B remains nonzero for A = B = 1.
Therefore it is easy to see that (S,A)-type deformation with parameter Fo° [AB] does not
exist in N/ =1 theory.

On the other hand, the (A,S)-type deformation is still allowed in N' = 1 theory. In
fact the reduction from N = 4 theory leads to the interaction term

Liag) = 77T [AsA%] C, (4.18)

9ym
where C' = 20(11)[0‘5]6a5. This result is also consistent with direct computation of string
amplitudes.

We note that it is possible to deform N = 1 super Yang-Mills theory in the (S,S)-
type background with the scaling condition (2o’ )%]: = fixed, where the scaling condition
(271'0/)%]: = fixed leads to a non(anti)commutative deformation of superspace [[7—[9]. We
find, however, that there are no interaction terms in the zero slope limit from calculation
of disk amplitudes and Chern-Simons term. We conclude N' = 1 super Yang-Mills theory
is not deformed in the (S,S)-type background at least up to leading order in deformation
parameter.

5. Deformed Lagrangian in AN/ = 1 superspace

Although the (S,A) and (A,S) type deformation is not realized as non(anti)commutative
superspace deformation, it would be useful to rewrite the deformation Lagrangian in su-
perfields in order to understand its geometrical structure. In this section we explore a
geometrical interpretation of the deformed super Yang-Mills theories in terms of NV = 1

superspace.

5.1 N =4 deformation
The Lagrangian of N' = 4 super Yang-Mills theory in A/ = 1 superspace is given by

3

_ 1 . _ 1 .
V== /d26d26 Tr)  (2ie?V e ?Y) + —— Tr[ /d26W°‘Wa+/d26WdW°‘]
kgyn = 16kg3\
V2 1 ) " V2 1 - k= = =
— d*0 Tre'* (9,0,04) + ~— d*0 Tre'* (2,8;3y,) . 5.1
3 kg%M/ e (B ) + 73 k:g%M/ e (Biy ) 51)

Here ®;,(®;) (i = 1,2,3) are (anti-)chiral superfields, V a vector superfield, W,, Wy its
super field strengths, which are written in terms of component fields as

O; = ¢ily) + V20i(y) + 00 Fi(y),
®; = ¢i() + V200 (y) + 00 (1),
27 1W, = —ida + [5aﬁD - z'(aW)aﬁFW} 05 + 02(0")ag D A°,
91, = —idg + [edBD +icgs (@) BFW] 07 — £,50%(6") % Dyha. (5.2)

We have followed the notation and convention in [BJ].
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Firstly we consider the (S,A)-type deformation. We can show that the interaction
terms (R.14) and (R.15) are regarded as the deformation of D-terms and F-terms:

(1) @ 1 19 02821y [ (5. 0@ON2 | §. @B | §. (eB)Ld]
£l +[’(S’A)2kg%M /d 0 620 Tr[(q>1c + B,0 + 3,0 )Dawﬁ}

1 / 20 02Tt | Do®1 Dg®oC @M 1 D0y Db AN 4 DaégDﬁ@C(“ﬁ)“ﬂ
9ym -

V2

kg%(M

+ 420 02 Tr [ (Do® W + D1 D W) COABY 1 (Do By Wy + By Da W) DA

+ (Da®3Wj + @300 W) C<0‘5>[23l}

n 3 /d20 02T _(q)lc,ul/[fiﬁl} T ) | @30;111[23})2}
kg L

+ i / &0 92 Tx [(®, 0112 4 §pomviB égcwﬂ‘ﬂ)?}. (5.3)
kg L

Here we have used the relation

D(2i—1)+4 = % (¢z‘ + Q_Sz) y P24 = % (qbz - Q_Sl) . (5.4)

It is natural to think that this complicated expression is simplified if one uses N' = 2
superspace formalism as in [E], which will be discussed elsewhere.

Next, we study the (A,S)-type deformation. In this case we have simple interpretation
of the Lagrangian in terms of deformation of gauge coupling constants and complex mass
parameters, which are functions on N' = 1 superspace. To see this, let us consider generic
mass deformation of the A/ = 4 Lagrangian

- 2 P2
g /d 0 Tr (mZQ)Z) +

L=t = o=ty 2kg? / d°0 Tr (m;®7) . (5.5)
YM

In terms of component fields, this is written as

LN=4 = pN=1 4 Tr [ — [mi*16il* + V27 midid; o

kg¥m
ijk 77 1 2 1_ o
— V2" m; ;b by — SMi%i — 5y |- (5.6)
The deformation terms (R.32) are written as
1 1 .

oL = —EM“bcTr {cpagob(pc] — §Tr [mABAO‘AAaB + mABAdAAO‘B] , (5.7)

where
M®e = myp(S*5P5) AP 4 mAB (298050 4, (5.8)
and map and mAZ are 4 x 4 matrices, which are mag = 0, mAB = —iC(AB) in the

(A,S)-type deformation?

*Here we assume the weight factor 2 for the amplitude (Vg V,, V), which could be determined by
evaluating the five-point amplitude {(V,V,V, V).
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When m4p and mAP take a diagonal form

map = dia‘g(_m07 mi,ma, m3)7

mAB = diag(_m05m15m2,m3) (59)
and mgy = mg = 0, we find

! 1 T
0L = =M™ Tr | apvpe| = 5Tx [mapA® 80 +mAPRasA% ]

2
P g | 1 -
= Tr |:\/§5Ukmi¢i¢j¢k — V2% m;gi ik — 5”%'%2 - 577%%2] (5.10)
which gives the mass deformation £\ =%,
If we turn on mg, mg, the Lagrangian contains the new terms
V2 . NI 1 1 -
oL =Tr ?e”kmo(gbiqﬁjm) - ?6Ukm0(¢i¢j¢k) - 57710)\2 - 57710)\2 . (511)

The first two terms are written as

1 V2
—— V2 ik dZHTr[em(’gQ(I)iq)j@k]—{—
kg2 3

Iym

9 _ o
= £e”’f/cﬂe Tr [em@?@i@j@k},(s.u)
kgon 3

which are regarded as the deformation of superpotential. The last two terms are regarded
as deformation of gauge coupling constant:

1

——_ Tr | [ d2f 2ot yy2 / d2f 2ol 2| 5.13
T6hg r[/ e + e (5.13)

The Lagrangian (b.5) together with (F.13) and (p.13) becomes the (A,S)-type deformed

one.

5.2 N =2 deformation

We can also write down the deformed N = 2 Lagrangians in N' = 1 superspace. The
N = 2 super Yang-Mills theory in N' = 1 superspace is given by

_ 1 I 1 R
N2 = / d*0d*0 Tr [@e?V eV |+ ———Tr / d*0 WWe + / 4’0 W we |,
kg 16k gy \;

(5.14)

where ® and ® are chiral and anti-chiral superfields.

For the (S,A)-type deformation, the interaction terms ([L.5) are written as

Ly +LE) = ! / a'9 0*6°Tx | BDW5C7 | +

 2kgy, / o0 [(T)QOHV@“”] '

(5.15)

2kg%M

Therefore the (S,A)-type deformation in superspace is realized by introducing new inter-
action term in the D- and F-terms. It would be interesting to examine this deformation in
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terms of N' = 2 superspace and its relation to the Q-deformation of N' = 2 super Yang-Mills
theory [[Ld, B4].

We now discuss the (A,S)-type deformation. As in the N’ = 4 case, the (A,S)-type
deformation is realized by the deformation of coupling parameters. The mass deformation
of N'= 2 super Yang-Mills theory is described by the Lagrangian

1 1 1 Aoz
LN=2 = pN=24 T Tr [5 /d26 m®d? + 3 /d20 mCDQ]
IyMm

0 [ — S - ). 10

Here we have integrated out auxiliary fields of the superfields. If we diagonalize the back-
ground CW) = diag(ing,m), the (A,S)-type deformation term (f13) is written as

m _ 1 — N2 = 72
The second term gives mass deformation term with m = 0. On the other hand, the first
term is written in terms of superspace valued gauge coupling as

1 - I S
— [ d%6 | W e . 5.18
16/<:g%M/ [e } ( )

6. Conclusions and discussion

In this paper we studied the first and second order corrections from the constant R-R
3-form backgrounds to A/ = 2 and 4 super Yang-Mills theories, which are realized as the
low-energy effective field theories on the (fractional) D3-branes in type IIB superstring
theory. We argued the (S,A) and (A,S)-type R-R backgrounds F, which correspond to
the R-R (dual) 3-form field strengths in closed superstring backgrounds. We also used
the scaling condition, where (o/ )1/ 2F is fixed in the zero-slope limit, to calculate the disk
amplitudes including a closed string R-R vertex operator.

The (S,A)-type background with this scaling condition is particularly useful to study
non-perturbative effects of super Yang-Mills theory. In fact, the instanton effective action
of N' = 2 super Yang-Mills theory with the (S,A)-type deformation agrees with that in
Q-background at the lowest order in the deformation parameter and gauge coupling con-
stant [[[§]. The Q-background is an important setup to applying a localization formula to
the integration over the instanton moduli space [, [Ld, B3, B4]. It is an interesting problem
to extend this correspondence to N/ = 4 theory or the (A,S)-type deformation and exam-
ine how the instanton moduli space and the low energy-effective action are deformed by
this background since the (S,A) and (A,S) deformed N = 4 super Yang-Mills theories can
accommodate both self-dual tensor and vector backgrounds simultaneously from the view-
point of N' = 2 deformations. This is also important in order to study the nonperturbative
superstring vacua in the presence of R-R backgrounds.

We examined supersymmetry of the deformed N = 4 action and find that NV = 4 su-
persymmetry is broken for generic deformation parameter. But for special case, a part of
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supersymmetries are unbroken and also deformed by the R-R background, which are similar
to the non(anti)commutative superspace. We argued the rank condition for deformation
parameter to determine unbroken supersymmetries. Deformations of NV =2 and N = 1
super Yang-Mills theories are described by the orbifold construction, and the number of
unbroken supersymmetries are determined by the rank condition for deformation parame-
ters. It would be interesting to study how the central charge of extended supersymmetry
algebra is deformed in these backgrounds.

The (S,A) and (A,S)-type deformations of action cannot be realized by the defor-
mation in non(anti)commutative superspace [[L0] since the spinor index structure of the
background is different from that of non(anti)commutative superspace. In the scaling con-
dition (o/)!/2F fixed, we find that the (A,S)-type deformation of A" = 2 super Yang-Mills
theory is realized by allowing coupling constants to take values in N' = 1 superspace. For
the (S,A) case, we need to introduce further interaction terms for superfields. But some
interaction terms take simple form when we use N' = 2 extended superspace. Therefore it
would be interesting to examine this deformation as the geometry of N’ = 2 superspace, as
discussed in the case of Q-background deformation [B3, B4].
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