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1. Introduction

Low-energy effective field theories on D-branes in closed string backgrounds have attracted

much attentions. The effects of the Ramond-Ramond (R-R) backgrounds are particularly

interesting for studying (non-)perturbative properties of supersymmetric gauge theories

and superstrings. For example, the constant graviphoton background, which comes from

the self-dual R-R 5-form field strenth wrapping three cycle in a Calabi-Yau manifold,

produces stringy corrections to the F-terms in effective theories [1, 2]. Such corrections

play an important role in studying non-perturbative properties of supersymmetric gauge

theories [3, 4]. Closed string background is also interesting from the geometrical point of
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view because it deforms the world-volume geometry of D-branes. A well-known example is

the constant NS-NS B-field, which leads to the noncommutative space-time realized by the

Moyal product [5, 6]. The R-R background also deforms the world-volume geometry. In

fact, the constant self-dual R-R 5-form background on the fractional D3-branes introduces

non(anti)commutativity of (Euclidean) superspace [7 – 9]. The deformed supersymmetric

gauge theories on non(anti)commutative superspace are studied extensively [10 – 14].

Since superstring theory contains R-R fields, it would be interesting to study deformed

supersymmetric gauge theories in R-R backgrounds with various ranks and their (non-

)perturbative properties. Recently Billó et al [15] studied the effective action on the frac-

tional D3-D(−1) system in the R-R 3-form background F with fixed (2πα′)1/2F in the

zero slope limit. They showed that the deformed action agrees with the instanton effective

action of N = 2 supersymmetric gauge theory in the Ω-background [3] at the lowest order

of the deformation parameter and gauge coupling constant. The Ω-background utilize the

integral over the instanton moduli space [3, 16]. This type of deformation is not obtained

from the non(anti)commutative deformation of superspace. It is an interesting problem to

study geometrical meaning of this deformation.

In order to examine the effects of R-R background, the most direct approach is to calcu-

late the low-energy effective action on the D-branes from superstring theory. One can com-

pute the action of non(anti)commutative gauge theories directly from the effective action on

the (fractional) D3-branes [15, 17 – 19], where interaction terms are obtained from the open

string disk amplitudes with insertion of graviphoton vertex operators. For example, the

deformed action of N = 1 supersymmetric gauge theories was derived from the fractional

D3-branes in type IIB superstring theories compactified on C3/Z2 ×Z2 [17]. The effective

theory is N = 1 super Yang-Mills theory on non(anti)commutative N = 1 superspace [10].

In [18, 19] we discussed the deformation of N = 2 and N = 4 super Yang-Mills

theories in the R-R background field strength of the form FαβAB , where α and β label

the spinor indices of (Euclidean) space-time and A and B are internal spinor indices. We

classify the field strength into four types F (αβ)(AB), F [αβ](AB), F (αβ)[AB] and F [αβ][AB].

Here (ab) ([ab]) denotes the (anti)symmetrization of ab. We call these deformations as

(S,S), (A,S), (S,A) and (A,A)-type, respectively, where the (S,S)-type deformation with

fixed (2πα′)3/2F corresponds to the case studied in [17]. In [18], we studied the first

order correction to N = 2 super Yang-Mills action from the (S,S)-type background with

fixed (2πα′)3/2F . We showed that deformed theory agrees with N = 2 super Yang-Mills

theory on non(anti)commutative N = 2 harmonic superspace [11 – 13]. In [19], we studied

the first order correction to N = 4 super Yang-Mills theory in (S,S)-type background

with fixed (2πα′)3/2F . By restricting the deformation parameter to the special case, the

deformed Lagrangian is reduced to the one in non(anti)commutative N = 1 superspace.

Therefore it is natural to think that the (S,S)-type deformation with fixed (2πα′)3/2F
corresponds to the non(anti)commutative deformation of N (≤ 4) extended superspace

at full order in deformation parameter. On the other hand, the index structure of the

(A,A) type background suggests that it corresponds to the singlet deformation of extended

superspace [12, 20], although we need to take into account the backreaction to the closed

string backgrounds [18]. The (S,A) and (A,S) type deformations with fixed (2πα′)3/2F
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would also provide nontrivial deformation of supersymmetric gauge theories, which cannot

be realized as non(anti)commutative superspace. However, it is difficult to compute the

deformed actions due to its complicated structure.

As shown in [15], the (S,A)-type background with fixed (2πα′)1/2F provides nontrivial

deformation of N = 2 super Yang-Mills theory, which is useful for studying instanton

calculus. Hence it would be an interesting problem to work out the deformations by the

constant R-R backgrounds with fixed (2πα′)1/2F and their non-perturbative properties.

The purpose of this paper is to study the deformation of super Yang-Mills theories with

N = 2 and 4 supersymmetries corresponding to the (S,A) and (A,S)-types background

with fixed (2πα′)1/2F .

We will calculate disk amplitudes with one R-R vertex operator and derive the effective

action on the (fractional) D-branes. For N = 4 case, we will show that the bosonic

action agrees with the Chern-Simons action with the (dual) R-R potentials [21]. The

deformed scalar potential has nontrivial minima. Actually, for both (S,A) and (A,S)-type

deformations of N = 4 super Yang-Mills theory, we find a fuzzy sphere configuration [22, 19]

for adjoint scalars. In general number of unbroken supersymmetries are restricted on the

D-branes in the presence of R-R backgrounds. We will examine invariance of the deformed

Lagrangian under remaining supersymmetries. The deformation of N = 2 super Yang-

Mills theory is obtained from N = 4 theory by the reduction due to the Z2 orbifold of

C2. For both N = 2 and N = 4 cases, we are able to explore geometrical interpretation

of this deformation in terms of superspace formalism. We will show that (S,A) and (A,S)-

type deformations with fixed (2πα′)1/2F are realized by introducing superspace dependent

coupling constants. This is in contrast with the case with the (S,S)-type deformation with

fixed (2πα′)3/2F , where its deformation is realized by the star product for supercoordinates.

This paper is organized as follows: in section 2, we calculate the (S,A) and (A,S)-

type background corrections to N = 4 super Yang-Mills theory from the open string

disk amplitudes with one closed string R-R vertex operator. Unbroken supersymmetries

are classified in terms of the rank of deformation parameter in some cases. The fuzzy

sphere configurations of vacuum in the deformed theories are investigated. In section 3, we

confirm that the R-R correction terms in (S,A) and (A,S)-type deformed N = 4 theories are

consistent with the Chern-Simons term of the D-brane effective action coupled to the R-R

potential. In section 4, we study the (S,A) and (A,S)-type deformations of N = 2 super

Yang-Mills theory and its deformed supersymmetry. In section 5 we rewrite the deformed

action in terms of N = 1 superspace and show that (A,S)-type deformation is regarded as

the mass deformation of super Yang-Mills theory. Section 6 is devoted to conclusions and

discussion.

2. Deformed N = 4 Super Yang-Mills theory in R-R 3-form background

In this section we study the low-energy effective action on D3-branes in type IIB super-

strings from the disk amplitudes with one R-R vertex operator of (S,A) or (A,S)-type.

Here we use NSR formalism and introduce spin fields [23, 24] to represent space-time

spinor. The low-energy effective field theory on N D3-branes are described by gauge fields
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Aµ (µ = 1, 2, 3, 4), six real scalars ϕa (a = 5, . . . , 10) and Weyl fermions Λα
A and Λ̄α̇

A

(A = 1, 2, 3, 4), which belong to the adjoint representation of gauge group U(N) . We

denote Tm as the basis of U(N) generators normalized as Tr(TmT n) = kδmn with constant

factor k.

The vertex operators for these fields are [26]

V
(−1)
A (y; p) = (2πα′)

1

2

Aµ(p)√
2

ψµ(y)e−φ(y)ei
√

2πα′p·X(y),

V
(0)
A (y; p) = 2i(2πα′)

1

2 Aµ(p)
(

∂Xµ(y) + i(2πα′)
1

2 p · ψψµ(y)
)

ei
√

2πα′p·X(y). (2.1)

V (−1)
ϕ (y; p) = (2πα′)

1

2

ϕa(p)√
2

ψa(y)e−φ(y)ei
√

2πα′p·X(y),

V (0)
ϕ (y; p) = 2i(2πα′)

1

2 ϕa(p)
(

∂Xa(y) + i(2πα′)
1

2 p · ψψa(y)
)

ei
√

2πα′p·X(y). (2.2)

V
(−1/2)
Λ (y; p) = (2πα′)

3

4 ΛαA(p)Sα(y)SA(y)e−
1

2
φ(y)ei

√
2πα′p·X(y),

V
(−1/2)

Λ̄
(y; p) = (2πα′)

3

4 Λ̄α̇A(p)Sα̇(y)SA(y)e−
1

2
φ(y)ei

√
2πα′p·X(y). (2.3)

Here (XM (z), ψM (z)) (M = 1, . . . , 10) are free bosons and fermions on the worldsheet,

where µ labels the worldvolume coordinates on D3-branes and a coordinates transverse to

the worldvolume of the D3-branes. Sα and SA denote the spin operators for space-time

and internal space parts. φ is a free boson obtained from the bosonization of the bosonic

ghost (β, γ). For gauge fields and scalar fields we use two physically equivalent vertex

operators with picture number −1 and 0. For fermions we use the vertex operator with

picture number −1/2.

The disk amplitudes in the zero-slope limit α′ → 0 reproduce the action of N = 4

super Yang-Mills theory. It is convenient to introduce auxiliary field vertex operators in

order to reduce higher point amplitudes to the lower ones [25, 26, 18, 19]. These are given

by

V
(0)
HAA

(y; p) =
1

2
(2πα′)Hµν(p)ψµψν(y)ei

√
2πα′p·X(y),

V
(0)
HAϕ

(y; p) = 2(2πα′)Hµa(p)ψµψa(y)ei
√

2πα′p·X(y),

V
(0)
Hϕϕ

(y; p) = − 1√
2
(2πα′)Hab(p)ψaψb(y)ei

√
2πα′p·X(y). (2.4)

Note that these vertex operators are not BRST invariant. The total Lagrangian includes

only the cubic interaction terms and becomes

LN=4 = − 1

kg2
YM

Tr

[

1

2
(∂µAν − ∂νAµ)∂µAν +i∂µAν [Aµ, Aν ]+

1

2
HcH

c+
1

2
Hcη

c
µν [A

µ, Aν ]

]

− 1

kg2
YM

Tr

[

1

2
HabHab +

1√
2
Hab[ϕa, ϕb]

]

− 1

kg2
YM

Tr

[

1

2
∂µϕa∂

µϕa + i∂µϕa[A
µ, ϕa] +

1

2
HµaH

µa + Hµa[A
µ, ϕa]

]

− 1

kg2
YM

Tr

[

iΛAσµDµΛ̄A−
1

2
(Σa)AB Λ̄α̇A[ϕa, Λ̄

α̇
B ]− 1

2

(

Σ̄a
)

AB
ΛαA[ϕa,Λ

B
α ]

]

. (2.5)
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Here the four-dimensional Euclidean sigma matrices are σµ = (iτ1, iτ2, iτ3, 1) and σ̄µ =

(−iτ1,−iτ2,−iτ3, 1), where τ i (i = 1, 2, 3) are the Pauli matrices. The six-dimensional

sigma matrices are given by

Σa =
(

η3,−iη̄3, η2,−iη̄2, η1, iη̄1
)

, Σ̄a = (−η3,−iη̄3,−η2,−iη̄2,−η1, iη̄1), (2.6)

where a = 5, · · · , 10. ηi
µν and η̄i

µν are ’t Hooft symbols, which are defined by σµν = i
2ηi

µντ i

and σ̄µν = i
2 η̄i

µντ
i. After integrating out the auxiliary fields, we get the quartic interaction

terms including the gauge fields and scalars, which is given by

L(0)
N=4 =

1

kg2
YM

Tr

[

−1

4
Fµν

(

Fµν + F̃µν

)

− iΛαA(σµ)αβ̇DµΛ̄β̇
A − 1

2
(Dµϕa)

2

+
1

2
(Σa)AB Λ̄α̇A[ϕa, Λ̄

α̇
B] +

1

2

(

Σ̄a
)

AB
ΛαA[ϕa,Λ

B
α ] +

1

4
[ϕa, ϕb]

2

]

. (2.7)

We call L(0)
N=4 undeformed Lagrangian.

We then introduce a R-R closed string vertex operator

V
(−1/2,−1/2)
F (z, z̄) = (2πα′)FαβAB

[

Sα(z)SA(z)e−
1

2
φ(z)Sβ(z̄)SB(z̄)e−

1

2
φ(z̄)

]

(2.8)

with constant FαβAB and insert this vertex operator in a disk amplitude. Here we have

used the doubling trick for the spin fields in (2.8) and have replaced the right-moving part

in the R-R vertex operator by Sβ(z̄)SB(z̄)e−
1

2
φ(z̄). The disk amplitude is now given by

〈〈V (q1)
X1

· · ·V (− 1

2
,− 1

2
)

F · · · 〉〉 = CD2

∫

∏n
i=1 dyi

∏nF

j=1 dzjdz̄j

dVCKG
〈V (q1)

X1
(y1) · · ·V

(− 1

2
,− 1

2
)

F (z1, z̄1) · · · 〉,
(2.9)

where V
(qk)
Xk

is the open string vertex operator corresponding to a field Xk with picture num-

ber qk, CD2
= 1

2π2(α′)2
1

kg2

YM

is a normalization factor and dVCKG is an SL(2,R)-invariant

volume factor to fix positions of three coordinates in yi, zj and z̄j. The sum of picture

numbers in a disk amplitude must be −2.

The constant R-R field strength FαβAB is decomposed into the types F (αβ)(AB),

F [αβ](AB), F (αβ)[AB] and F [αβ][AB], which are called (S,S), (A,S), (S,A) and (A,A)-type,

respectively. It is shown in [19] that the (S,S)-type background corresponds to the R-R

5-form and the (A,S) and (S,A)-types to 3-forms and its dual 7-forms, the (A,A)-type to

the 1-form and its dual 9-form. In order to discuss the zero-slope limit, we need to specify

the scaling condition for F . In the previous paper [19], we have studied the (S,S)-type

deformation with the scaling condition (2πα)3/2F fixed, which would correspond to the

deformation of underlying N = 4 extended superspace.

In this paper we will consider the (S,A) and (A,S)-type deformations with different

scaling condition (2πα′)1/2F fixed. These types of deformations cannot be realized by

introducing non(anti)commutativity of superspace and give new types of deformed theories.

The scaling condition F ∼ (α′)−1/2 is particularly interesting because it provides the (S,A)-

type deformation of D(−1)-instanton effective action similar to the Ω-background in N = 2

super Yang-Mills theory [3, 15]. We will consider the effects of the R-R 3-form field strength

of (S,A) and (A,S)-types to the low-energy effective Lagrangian in the N = 4 case.

– 5 –
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2.1 (S,A)-type deformation

2.1.1 Lagrangian

Firstly we discuss the (S,A)-type deformation of N = 4 super Yang-Mills theory. For the

(S,A)-type background F (αβ)[AB], we find that the disk amplitudes which are nonzero in

the zero-slope limit are given by 〈〈VAVϕVF 〉〉, 〈〈VHAA
VϕVF 〉〉 and 〈〈VΛVΛVF 〉〉. The explicit

computations of these amplitudes are essentially the same as in [19]. We do not repeat

detailed calculations here. The first two amplitudes become

〈〈V (0)
A (p1)V

(−1)
ϕ (p2)V

(−1/2,−1/2)
F 〉〉 = −(−i)

4π

kg2
YM

Tr[(σµν)αβip1µAν(p1)(Σ̄
a)ABϕa(p2)]

×(2πα′)
1

2F (αβ)[AB], (2.10)

and

〈〈V (0)
HAA

(p1)V
(−1)
ϕ (p2)V

(−1/2,−1/2)
F 〉〉 = −(−i)

1

2i

1

2

4π

kg2
YM

Tr[(σµν)αβHµν(p1)(Σ̄
a)ABϕa(p2)]

×(2πα′)
1

2F (αβ)[AB]. (2.11)

The interaction terms corresponding to these amplitudes are given by

− 2πi

kg2
YM

Tr

[

(σµν)αβ

(

∂[µAν] −
i

2
Hµν

)

(Σ̄a)ABϕa

]

(2πα′)
1

2F (αβ)[AB]. (2.12)

The third amplitude is

〈〈V (−1/2)
Λ (p1)V

(−1/2)
Λ (p2)V

(−1/2,−1/2)
F 〉 = i

4πi

kg2
YM

Tr
[

εABCDΛ A
α (p1)Λ

B
β (p2)

]

×(2πα′)
1

2F (αβ)[CD]. (2.13)

Introducing symmetric factor in (2.13) and adding the terms (2.12), we obtain the inter-

action term including auxiliary fields. Integrating out the auxiliary fields, we find that the

deformed Lagrangian is L(0)
N=4 + L(1)

(S,A) + L(2)
(S,A) + · · · , where

L(1)
(S,A) =

1

kg2
YM

Tr [iFµνϕa]C
µνa − 1

kg2
YM

Tr
[

εABCDΛ A
α Λ B

β

]

C(αβ)[CD], (2.14)

L(2)
(S,A) =

1

2

1

kg2
YM

Tr [ϕaϕb] C
a

µν Cµνb. (2.15)

Here we have defined the deformation parameter by

Cµνa ≡ −2π(2πα′)
1

2 (σµν)αβ

(

Σ̄a
)

AB
F (αβ)[AB],

C(αβ)[AB] ≡ −2π(2πα′)
1

2F (αβ)[AB]. (2.16)

The O(C2) term L(2)
(S,A) arises from the integration over the auxiliary field. It is possible

to construct higher order O(Cn) terms from the disk amplitudes. It is not clear that

these amplitudes are reducible or not. For example, at order C2, there is an amplitude

– 6 –
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〈〈VHϕϕVFVF 〉〉, which might change the coefficients of the ϕ2C2 term in L(2)
(S,A). However, as

we will see in section 4, the reduction from N = 4 to N = 2 theory shows that L(2)
(S,A) gives

the O(C2) term of the N = 2 theory, where the O(C2) term is exact. Moreover, as we see

in the next subsection, the O(C2) deformed Lagrangian is invariant under O(C) deformed

supersymmetry for some C. This is rather different from non(anti)commutative N = 2

supersymmetric gauge theory, where deformed supersymmetry transformation contains

higher order contributions of the deformation parameter [27]. In order to cancel this

deformation transformation, it is necessary to introduce infinite number of interaction

terms. But for the (S,A)-deformed Lagrangian we do not need to introduce such a higher

order counter term. These properties suggest that the deformed Lagrangian L(0)
N=4+L(1)

(S,A)+

L(2)
(S,A) is an exact Lagrangian, which would be difficult to prove in the NSR formalism.

2.1.2 Deformed supersymmetry

We examine supersymmetry of the deformed Lagrangian. The Lagrangian L(0)
N=4 of N = 4

super Yang-Mills theory is invariant under on-shell N = 4 supersymmetry, which is

δ0Aµ = i(ξAσµΛ̄A + ξ̄Aσ̄µΛA),

δ0Λ
A = σµνξAFµν + (Σa)

ABσµξ̄BDµϕa − i(Σab)
A
BξB[ϕa, ϕb],

δ0Λ̄A = σ̄µν ξ̄AFµν + (Σ̄a)AB σ̄µξBDµϕa − i(Σ̄ab)
B

A ξ̄B[ϕa, ϕb],

δ0ϕa = i(ξA(Σ̄a)ABΛB + ξ̄A(Σa)
ABΛ̄B). (2.17)

The deformed Lagrangian L(0)
N=4+L(1)

(S,A)+L(2)
(S,A)+· · · is not invariant under this supersym-

metry. We explore deformation of supersymmetry under which the deformed Lagrangian

is invariant. The deformed supersymmetry transformation δ can be expanded in the form

δ = δ0 + δ1 + · · · , where δn is the variation including of the n-th order power of C. The

deformed supersymmetry δn is determined recursively by solving the conditions [28, 29]

δ1L(0)
N=4 + δ0L(1)

(S,A) = 0, δ2L(0)
N=4 + δ1L(1)

(S,A) + δ0L(2)
(S,A) = 0, (2.18)

and so on. However, we find that there is no solution of (2.18) for generic C. In the first

equation of (2.18), a part of the variation δ0L(1)
(S,A) is canceled by deforming the supersym-

metry transformation of ΛA as

δ1Λ
A = −iϕaCµνaσ

µνξA. (2.19)

Then, at the first order in C, we have

δ1L(0)
N=4 + δ0L(1)

(S,A) =
1

kg2
YM

Tr
[

−C(αβ)a(Σ̄a)ABξA
β Fµν(σµνΛB)α

− iC(αβ)a(Σ̄bc)
B

A (Σ̄a)BCξC
α [ϕb, ϕc]Λ

A
β

]

+
1

kg2
YM

Tr
[

−FµνCµνaξ̄A(Σa)
ABΛ̄B

+ C(αβ)aϕb(Σ̄b)BA(Σa)
AC(σµξ̄C)αDµΛB

β

]

. (2.20)
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rank of C(αβ)[12]

0 1 2

0 N = (2, 2) N = (3/2, 1) N = (1, 1)

rank of C(αβ)[34] 1 N = (3/2, 1) N = (1, 0) N = (1/2, 0)

2 N = (1, 1) N = (1/2, 0) N = (0, 0)

Table 1: The number of unbroken supersymmetry in N = 4 SYM with (S,A)-type deformation in

the case where only C(αβ)[12] and C(αβ)[34] are nonzero.

In order that the supersymmetry variation (2.20) vanishes, we have to require

εABCDC(αβ)[BC]ξD
β = 0, C(αβ)[AB]ξ̄α̇B = 0, (2.21)

which have only a trivial solution ξ = ξ̄ = 0 for generic C. The variation of the second

order in C also vanishes by the same condition without introducing δ2. For special C such

that (2.21) have nontrivial solution, the theory is invariant under the deformed supersym-

metry δ = δ0 + δ1 at the second order in C. Although we do not fully classify the unbroken

supersymmetries in this paper, we illustrate the number of deformed supersymmetry in the

case where only C(αβ)[12] and C(αβ)[34] are nonzero. From (2.21) the number of unbroken

supersymmetry depends on the rank of C(αβ)[12] and C(αβ)[34]. We summarize the number

of unbroken supersymmetries in table 1, where N = (p/2, q/2) denotes supersymmetry

with p chiral and q anti-chiral supercharges.

2.1.3 Deformed scalar potential

In the case of non(anti)commutative N = 4 super Yang-Mills theory, fuzzy sphere config-

uration with the constant U(1) gauge field background is found [22, 19]. In the deformed

Lagrangian (2.14)–(2.15), the scalar potential receives also corrections from the R-R back-

ground. We investigate how classical vacua configuration is deformed.

The scalar potential reads

V (ϕ) = − 1

kg2
YM

Tr

[

1

4
[ϕa, ϕb]

2 +
1

2
(Cµνaϕa)

2

]

. (2.22)

The stationary condition becomes

−∂V (ϕ)

∂ϕa
=

[

ϕb, [ϕa, ϕb]
]

+ CµνaC
µνbϕb = 0. (2.23)

We explore the solution with the fuzzy sphere ansatz such as

[ϕa, ϕb] = ifabcϕc, (2.24)

where fabc is a constant antisymmetric tensor. If we plug (2.24) into (2.23), we obtain

fabcfbcd = CµνaC
µν

d. (2.25)
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Hence (2.24) is a solution of (2.23) if (2.25) is satisfied. We regard Cµν
a as a 6 × 6 matrix

of which rows and columns are specified by µν and a respectively. One can find the rank

of Cµν
a is three due to the self-dual condition. The rank of CµνaC

µν
d is also three. Then

we can take the basis such that the upper-left 3× 3 submatrix of CµνaC
µν

d is only nonzero.

The solution becomes

[ϕa, ϕb] = ifabcϕc for a, b, c = 5, 6, 7, (2.26)

[ϕa, ϕb] = 0 otherwise, (2.27)

where fabc is totally antisymmetric tensor. After the appropriate rescaling of ϕa, (2.26)

becomes the SU(2) algebra.1 Therefore (2.26) gives the fuzzy S2 solution. We note that

this fuzzy sphere configuration arises without the constant U(1) gauge field strength back-

ground, which is different from non(anti)commutative case [22, 19].

2.2 (A,S)-type deformation

2.2.1 Lagrangian

In the (A,S)-type background, nonzero amplitudes with one graviphoton vertex operator

are given by 〈〈VHϕϕVϕVF 〉〉 and 〈〈VΛ̄VΛ̄VF 〉〉, which are evaluated as

〈〈V (0)
Hϕϕ

(p1)V
(−1)
ϕ (p2)V

(−1/2,−1/2)
F 〉〉 = − 1√

2

πi

kg2
YM

Tr
[

(Σ̄aΣbΣ̄c)ABHab(p1)ϕc(p2)
]

×(2πα′)
1

2F [αβ](AB)εαβ , (2.28)

and

〈〈V (−1/2)

Λ̄
(p1)V

(−1/2)

Λ̄
(p2)V

(−1/2,−1/2)
F 〉〉 =

4πi

kg2
YM

Tr
[

Λ̄α̇A(p1)Λ̄
α̇
B(p2)

]

×(2πα′)
1

2F [αβ](AB)εαβ . (2.29)

After including the symmetric factor 1/2! for the second amplitude, we find that new

interaction terms induced by the (A,S)-type background are

− 1√
2

1

kg2
YM

Tr
[

(Σ̄aΣbΣ̄c)ABHabϕc

]

C(AB) +
2

kg2
YM

Tr
[

Λ̄α̇AΛ̄α̇
B

]

C(AB), (2.30)

where

C(AB) ≡ −πi(2πα′)
1

2F [αβ](AB)εαβ . (2.31)

After integrating out the auxiliary fields, the deformed Lagrangian is written as L(0)
N=4 +

L(1)
(A,S) + L(2)

(A,S), where

L(1)
(A,S) =

1

kg2
YM

Tr
[

(Σ̄aΣbΣ̄c)ABϕaϕbϕc

]

C(AB) +
2

kg2
YM

Tr
[

Λ̄α̇AΛ̄α̇
B

]

C(AB), (2.32)

L(2)
(A,S) =

1

4

1

kg2
YM

Tr
[

(Σ̄aΣbΣ̄c)AB(Σ̄aΣbΣ̄d)CDϕcϕd

]

C(AB)C(CD). (2.33)

1We assume that fabc are real.
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Here L(2)
(A,S) arises by integration over the auxiliary fields. In contrast to the (S,A)-type

deformation, there are no other nonzero open string disk amplitudes at O(C2) in the case

of (A,S)-type background. Therefore the O(C2) term is exact although there might exist

higher order deformed terms.

2.2.2 Deformed supersymmetry

We study supersymmetry of the deformed Lagrangian. As in the case of (S,A)-type defor-

mation, we expand supersymmetry transformation as δ = δ0 + δ1 + · · · . Then the variation

of the deformed Lagrangian at the first order in C is

δ1L(0)
N=4 + δ0L(1)

(A,S) =
1

kg2
YM

Tr
[

6iC(AB)(Σ̄ab) C
B εACDEξEΛD − 4C(AB)ξ̄Aσ̄µνΛ̄BFµν

+ iC(AB)(Σ̄ab) C
B (2ξ̄CΛ̄A − 6ξ̄AΛ̄C)[ϕa, ϕb]

]

, (2.34)

where we have deformed the supersymmetry transformation of ΛA as

δ1Λ
A = −4iC(AB)(Σ̄a)BCξCϕa. (2.35)

The supersymmetry variation (2.34) vanishes if C(AB) satisfies

C(AB)(Σ̄ab) C
B εACDEξE = 0,

C(AB)ξ̄B = 0, C(AB)(Σ̄ab) C
B ξ̄C = 0. (2.36)

The variation of second order in C(AB) also vanishes by the same condition without in-

troducing δ2. If the rank of C(AB) is one, we have one nonzero ξA and no nonzero ξ̄A as

the solution of (2.36). Then the supersymmetry is broken to N = (1/2, 0). If the rank of

C(AB) is more than one, all supersymmetries are broken.

2.2.3 Deformed scalar potential

In the case of (A,S)-type deformation, the potential for the adjoint scalar field is

−V (ϕ) =
1

4
[ϕa, ϕb]

2 + (Σ̄aΣbΣ̄c)ABϕaϕbϕcC
(AB)

+
1

4
(Σ̄aΣbΣ̄c)AB(Σ̄aΣbΣ̄d)CDϕcϕdC

(AB)C(CD). (2.37)

The stationary condition is

− ∂V

∂ϕa
= [ϕb, [ϕa, ϕb]] +

3

2
(Σ̄aΣbΣ̄c)ABC(AB)[ϕb, ϕc]

+
1

2
(Σ̄aΣbΣ̄c)AB(Σ̄bΣcΣ̄d)CDC(AB)C(CD)ϕd = 0. (2.38)

This equation has a fuzzy sphere solution. Let us assume that ϕa satisfies the commutation

relation

[ϕa, ϕb] = iαfabcϕc, (2.39)
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where fabc = (Σ̄aΣbΣ̄c)ABC(AB). The constant α is fixed by the equation

(

α2 − 3

2
iα − 1

2

)

fabcfbcdϕd = 0, (2.40)

which are obtained by the substitution of (2.39) into the stationary condition (2.38). The

equation (2.40) admits nonzero solutions. Therefore we can formally obtain the nontrivial

fuzzy sphere solutions. However, fabc is subjected by the (imaginary) self-dual condition

fabc =
i

3!
εabcdeffdef . (2.41)

For instance, if f5,6,7 is real, f8,9,10 is imaginary. We should consider the fuzzy sphere

configuration in the complexified space of the scalar fields.

3. Non-abelian Chern-Simons term

In this section, we will check that the new bosonic interaction terms arising from the (S,A)

and (A,S)-type backgrounds are consistent with the non-abelian Chern-Simons term in the

D-brane effective action [21]. The Chern-Simons term is written as

SCS =
µ3

k
STr

∫

M4

∑

n

P [eiλi2ϕλ
1

2A(n)]eλF . (3.1)

Here λ = 2πα′, A(n) is an n-form R-R potential, µ3 = 1
λ2g2

YM

is the R-R charge of a

D3-brane. The integral is performed over the four-dimensional D3-brane worldvolume

M4. F = 1
2!Fµνdxµ ∧ dxν is a U(N) gauge field strength which lives in the D3-brane

worldvolume and ϕa is U(N) adjoint scalar fields. The symbol P denotes the pull-back of

ten-dimensional fields and iϕ is the interior product by ϕa. STr is a symmetric trace of U(N)

gauge group. In the following, we will take a static gauge in which the four-dimensional

part in ten-dimensional space-time is identified with the worldvolume direction.

3.1 (S,A)-type deformation

For the (S,A)-type background, there exists the R-R 3-form and its dual 7-form field

strength with the index structure

Fµνa = ∂[µAν]a + ∂aAµν ,

Fµνabcde = ∂[µAν]abcde + ∂(aAbcde)µν , (3.2)

where µ, ν = 1, . . . , 4 are worldvolume directions and a, b, . . . , e = 5, . . . , 10 are six-

dimensional directions transverse to the D-brane worldvolume.

First, we calculate contributions from the 3-form field strength with the 2-form poten-

tials Aµν ,Aµa. The Chern-Simons term is

µ3

k
STr

∫

M4

P [eiλi2ϕλ
1

2A(2)]eλF

∣

∣

∣

∣

(S,A)

=
µ3

k
STr

λ

4

∫

M4

P [A(2)]µνFρσεµνρσd4x. (3.3)
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Here |(S,A) means the restriction of the R-R indices to (S,A)-type deformation (3.2). The

pull-back is given by

P [A(2)]µν = AMN
∂XM

∂xµ

∂XN

∂xν
= Aµν + 2λAµaDνϕa. (3.4)

Here XM (M = (µ, a) = 1, . . . , 10) are ten-dimensional space-time coordinates where Xa

are identified with adjoint scalar fields in N = 4 vector multiplet through Xa = λϕa. Note

that the pull-back is covariantized with respect to U(N) gauge group. The potential has

to be expanded by the fluctuation ϕa such that

Aµν = A(0)
µν + λϕc∂cA(0)

µν ,

Aµa = A(0)
µa . (3.5)

Here A(0)
µν ,A(0)

µa are 2-form potentials evaluated at ϕa = 0. In the following we omit the

superscript (0). After using Bianchi identity εµνρσDνFρσ = 0 and partial integrations, we

find

µ3

k
STr

∫

M4

P [eiλi2ϕλ
1

2A(2)]eλF

∣

∣

∣

∣

(S,A)

=
1

2kg2
YM

∫

M4

d4x Tr [ϕaFµν ] (2πα′)
1

2Fµνa. (3.6)

By identifying (2πα′)
1

2Fµνa = 2iCµνa, this Chern-Simons term precisely agrees with the

O(C) part of the (S,A)-deformation term (2.14).

Next, we calculate contributions from the 7-form part, which take the form

µ3

k
STr

∫

M4

P [eiλi2ϕλ
1

2A(6)]eλF =
µ3

k
STr

∫

M4

[

iλ
3

2 P [i2ϕA(6)] − 1

2
λ

7

2 P [(i2ϕ)2A(6)]

∧F − i

2 · 3!λ
11

2 P [(i2ϕ)3A(6)] ∧ F ∧ F

]

, (3.7)

where A(6) takes the form either Aµabcde or Aµνabcd. After evaluating STr, pull-back, and

expansion in fluctuation, we find that (3.7) becomes

λ
3

2

kg2
YM

∫

M4

d4x εµνρσSTr

[

i

4
AabcdµνϕbϕaDρϕcDσϕd −

1

8
AabcdµνϕdϕcϕbϕaFρσ

]

+
λ

5

2

kg2
YM

∫

M4

d4xεµνρσSTr

[

i

6
AabcdeµϕbϕaDνϕcDρϕdDσϕe+

i

4
∂eAabcdµνϕbϕaϕeDρϕcDσϕd

−1

8
∂eAabcdµνϕdϕcϕbϕaϕeFρσ−

1

4
AabcdeµϕdϕcϕbϕaDνϕeFρσ

]

.

(3.8)

The λ
3

2 term vanishes by the partial integration. The λ
5

2 term will not contribute to the

deformation term in field theory limit in our scaling λ
1

2F = fixed. Thus we see that our

open string calculation is consistent with effective action of D-brane in the presence of R-R

background for the (S,A)-type deformation.
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3.2 (A,S)-type deformation

For the (A,S)-type deformation, the R-R 3-form and its dual 7-form field strength with

index structure are given by

Fabc = ∂(aAbc),

Fµνρσabc = ∂[µAνρσ]abc + ∂(aAbc)µνρσ. (3.9)

The Chern-Simons term corresponding to the R-R 2-form potential is

µ3

k
STr

∫

M4

P [eiλi2ϕλ
1

2A(2)]eλF

∣

∣

∣

∣

(A,S)

=
λ

5

2

4kg2
YM

STr

∫

M4

d4x ∂cAabϕcDµϕaDνϕbFρσεµνρσ

+
iλ

5

2

8kg2
YM

STr

∫

M4

d4x ∂cAabϕbϕaϕcFµνFρσεµνρσ .

(3.10)

After evaluating STr and performing partial integrations, we find that this becomes

1

12kg2
YM

∫

M4

d4x Tr
[

ϕaDµϕbDνϕcFρσεµνρσ
]

(2πα′)
5

2Fabc

− i

24kg2
YM

∫

M4

d4x Tr
[

ϕaϕbϕcFµνFρσεµνρσ
]

(2πα′)
5

2Fabc. (3.11)

Those terms vanish in the zero-slope limit α′ → 0 with fixed λ
1

2F . On the other hand, the

7-form part is calculated by the same way as

µ3

k
STr

∫

M4

P [eiλi2ϕλ
1

2A(6)]eλF

∣

∣

∣

∣

(A,S)

= − i

3 · 4!
1

kg2
YM

∫

M4

d4x Tr
[

ϕaϕbϕc

]

(2πα′)
1

2 F̃abc.

(3.12)

Here we have defined

F̃abc ≡ Fabcµνρσεµνρσ. (3.13)

This term precisely agrees with the (A,S)-type deformation term (2.32) at linear order

in deformation parameter with the identification − i
3·4!(2πα′)

1

2 F̃abc = (Σ̄aΣbΣ̄c)ABC(AB).

Therefore the (A,S)-type deformation is related to the dual 7-form R-R field strength.

4. Deformed N = 2 super Yang-Mills theories

So far we have studied the deformation of N = 4 super Yang-Mills theory in the R-R 3-

form background. In this section we study deformed N = 2 U(N) super Yang-Mills theory

in the (S,A) and (A,S)-type backgrounds. To realize N = 2 U(N) supersymmetric gauge

theory, we use N fractional D3-branes located at the singularity of the orbifold C2/Z2 [30].

Since the orbifold projection restricts R-symmetry group SU(4) to SU(2), the internal spin

fields SA become the doublet Si (i = 1, 2) of SU(2). The massless fields on the fractional
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D3-branes are gauge fields Aµ, Weyl fermions Λi
α and a complex scalar ϕ, whose vertex

operators are obtained by the orbifold projection and are defined in [18]. The undeformed

Lagrangian is given by

L(0)
N=2 =

1

kg2
YM

Tr

[

−1

4
FµνFµν − 1

4
Fµν F̃µν − DµϕDµϕ̄ − 1

2
[ϕ, ϕ̄]2

−iΛiα(σµ)αβ̇DµΛ̄ β̇
i − i√

2
Λi[ϕ̄,Λi] +

i√
2
Λ̄i[ϕ, Λ̄i]

]

. (4.1)

We introduce the R-R vertex operator of the form

V
(−1/2,−1/2)
F (z, z̄)=(2πα′)Fαβij

[

Sα(z)S(−)(z)Si(z)e−
1

2
φ(z)Sβ(z̄)S(−)(z̄)Sj(z̄)e−

1

2
φ(z̄)

]

.(4.2)

The R-R field strength can be decomposed into F (αβ)(ij), F (αβ)[ij], F [αβ](ij) and F [αβ][ij],

which corresponds to the R-R 5-form, 3-form (7-form), 3-form (7-form) and 1-form (9-

form) field strength respectively. We calculate the deformed Lagrangian in the (S,A) and

(A,S)-type deformations with the scaling condition F ∼ (α′)−1/2 as we did in the N = 4

case.

4.1 (S,A)-type deformation

The N = 2 (S,A)-type deformation was studied in [15]. The nonzero disk amplitudes which

contain single F (αβ)[ij], are 〈〈VAVϕ̄VF 〉〉 and 〈〈VHAA
Vϕ̄VF 〉〉. The first amplitude is evaluated

as

〈〈V (0)
A (p1)V

(−1)
ϕ̄ (p2)V

(−1/2,−1/2)
F 〉〉 =

4
√

2π

kg2
YM

Tr [(σµν)αβip1µAν(p1)ϕ̄(p2)] (2πα′)
1

2F (αβ)[ij]εij .

(4.3)

Combining the result of the second amplitude, we get the interaction term

−(−i)
2
√

2π

kg2
YM

Tr

[(

∂[µAν] −
i

2
Hµν

)

ϕ̄(σµν)αβ

]

εijF (αβ)[ij]. (4.4)

After integrating out the auxiliary fields, we find

L(1)
(S,A) + L(2)

(S,A) =
1

kg2
YM

Tr

[

iFµν ϕ̄C̃µν +
1

2
(ϕ̄C̃µν)2

]

, (4.5)

where we have defined C̃µν ≡ 2
√

2πi(σµν)αβεijF (αβ)[ij]. Since at order C2 there are no

other disk amplitudes which contribute to the Lagrangian, the deformed Lagrangian is

exact up to higher order corrections in C.

The deformation term (4.5) can be also obtained by the reduction from N = 4 to

N = 2 by the Z2 orbifold projection, which is given by

ΛA
α = 0 for A = 3, 4, ϕa = 0 for a = 7, 8, 9, 10, (4.6)
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rank of C̃(αβ)

0 1 2

0 N = (1, 1) N = (1, 0) N = (1, 0)

rank of C̄(αβ) 1 N = (1/2, 1) N = (1/2, 0) N = (1/2, 0)

2 N = (0, 1) N = (0, 0) N = (0, 0)

Table 2: The number of unbroken supersymmetry in N = 2 SYM with (S,A)-type deformation.

and only C(αβ)[12] and C(αβ)[34] are nonzero [15]. Under the reduction, the deformation

term becomes

L(1)
(S,A) + L(2)

(S,A) =
1

kg2
YM

Tr

[

i(C̃µν ϕ̄ + C̄µνϕ)Fµν − 1√
2
C̄µνΛiσµνΛi +

1

2
(C̃µνϕ̄ + C̄µνϕ)2

]

,

(4.7)

where C̃µν and C̄µν are defined as

C̃µν = 2
√

2iCµν[12], C̄µν = −2
√

2iCµν[34], (4.8)

and we have used

ϕ =
1√
2
(ϕ5 − iϕ6), ϕ̄ =

1√
2
(ϕ5 + iϕ6). (4.9)

In the case of C̄µν = 0, (4.7) is reduced to (4.5). The deformation parameter C̄µν is referred

as the graviphoton-like vertex operator in [15].

We examine the deformed supersymmetry of the Lagrangian L(0)
N=2 + L(1)

(S,A) + L(2)
(S,A).

The deformed supersymmetry transformation is obtained from the Z2 projection in N = 4

theory, which is given by

δAµ = i(ξiσµΛ̄i + ξ̄iσ̄µΛi),

δΛi = σµνξi
(

Fµν − i(C̃µν ϕ̄ + C̄µνϕ)
)

+
√

2iσµξ̄iDµϕ − iξi[ϕ, ϕ̄],

δΛ̄i = σ̄µν ξ̄iFµν −
√

2iσ̄µξiDµϕ̄ + iξ̄i[ϕ, ϕ̄],

δϕ =
√

2ξiΛi,

δϕ̄ =
√

2ξ̄iΛ̄i. (4.10)

The deformed Lagrangian is invariant under (4.10) if ξ and ξ̄ satisfy

C̄(αβ)ξi
β = 0,

ξ̄i = 0 or C̃(αβ) = 0, (4.11)

where C̃(αβ) = 2
√

2iC(αβ)[12], C̄(αβ) = −2
√

2iC(αβ)[34]. As in the N = 4 case, we can

classify the unbroken supersymmetries, which are summarized in table 2.
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4.2 (A,S)-type deformation

Next we consider the (A,S)-type deformation of N = 2 super Yang-Mills theory. At the

first order in F , the nonzero amplitude is possible only for

〈〈V (−1/2)

Λ̄
(p1)V

(−1/2)

Λ̄
(p2)V

(−1/2,−1/2)
F 〉〉 =

4πi

kg2
YM

Tr
[

Λ̄α̇i(p1)Λ̄
α̇
j(p2)

]

(2πα′)
1

2F [αβ](ij)εαβ .

(4.12)

The interaction term is given by

L(1)
(A,S) =

1

kg2
YM

Tr
[

Λ̄α̇i(x)Λ̄α̇
j(x)

]

C(ij). (4.13)

Here C(ij) ≡ −2πi(2πα′)
1

2F [αβ](ij)εαβ .

As in the case of (S,A)-type deformation, We can obtain deformed Lagrangian from the

N = 4 one by the reduction. The deformation parameter C(AB) takes the block diagonal

form:

C(AB) =
1

2

(

C(ij) 0

0 C (̂iĵ)

)

, i, j = 1, 2, î, ĵ = 3, 4. (4.14)

Then the deformation terms become

L(1)
(A,S) + L(2)

(A,S) =
1

kg2
YM

Tr
[

C(ij)Λ̄α̇iΛ̄
α̇
j − C(ij)C(ij)ϕ̄

2 − C (̂iĵ)C(̂iĵ)ϕ
2
]

. (4.15)

We note that only the O(C2) terms in (4.15) are allowed to exist at this order due to

the charge conservation of vertex operators in the disk amplitudes, which are given by

〈〈Vϕ̄Vϕ̄VFVF 〉〉, 〈〈VϕVϕVF̄VF̄ 〉〉. Here VF̄ is the closed string R-R vertex operator corre-

sponding to C îĵ.

The deformed Lagrangian is invariant under the supersymmetry transformation

δAµ = i(ξiσµΛ̄i + ξ̄iσ̄µΛi),

δΛi = σµνξiFµν +
√

2iσµξ̄iDµϕ − iξi[ϕ, ϕ̄] − 4
√

2ϕ̄C(ij)ξj,

δΛ̄i = σ̄µν ξ̄iFµν −
√

2iσ̄µξiDµϕ̄ + iξ̄i[ϕ, ϕ̄],

δϕ =
√

2ξiΛi,

δϕ̄ =
√

2ξ̄iΛ̄i, (4.16)

if ξ̄ satisfies

C(ij)ξ̄j = 0. (4.17)

Hence the theory has N = (1, 0) supersymmetry in the generic case. But it is enhanced to

N = (1, 1/2) supersymmetry if the rank of C(ij) is one.

4.3 Comments on the reduction to N = 1 theory

We are able to discuss further reduction to deformed N = 1 theory from the orbifold

R6/Z2×Z2 [31], which can be done by restriction ϕa = 0 (a = 5, . . . 10),Λ2,3,4 = Λ̄2,3,4 = 0
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in N = 4 theory. The deformation parameter FαβAB remains nonzero for A = B = 1.

Therefore it is easy to see that (S,A)-type deformation with parameter Fαβ[AB] does not

exist in N = 1 theory.

On the other hand, the (A,S)-type deformation is still allowed in N = 1 theory. In

fact the reduction from N = 4 theory leads to the interaction term

L(A,S) =
1

kg2
YM

Tr
[

Λ̄α̇Λ̄α̇
]

C, (4.18)

where C = 2C(11)[αβ]εαβ . This result is also consistent with direct computation of string

amplitudes.

We note that it is possible to deform N = 1 super Yang-Mills theory in the (S,S)-

type background with the scaling condition (2πα′)
1

2F = fixed, where the scaling condition

(2πα′)
3

2F = fixed leads to a non(anti)commutative deformation of superspace [17 – 19]. We

find, however, that there are no interaction terms in the zero slope limit from calculation

of disk amplitudes and Chern-Simons term. We conclude N = 1 super Yang-Mills theory

is not deformed in the (S,S)-type background at least up to leading order in deformation

parameter.

5. Deformed Lagrangian in N = 1 superspace

Although the (S,A) and (A,S) type deformation is not realized as non(anti)commutative

superspace deformation, it would be useful to rewrite the deformation Lagrangian in su-

perfields in order to understand its geometrical structure. In this section we explore a

geometrical interpretation of the deformed super Yang-Mills theories in terms of N = 1

superspace.

5.1 N = 4 deformation

The Lagrangian of N = 4 super Yang-Mills theory in N = 1 superspace is given by

LN=4 =
1

kg2
YM

∫

d2θd2θ̄ Tr
3

∑

i=1

(

Φ̄ie
2V Φie

−2V
)

+
1

16kg2
YM

Tr

[
∫

d2θW αWα+

∫

d2θ̄W̄α̇W̄ α̇

]

−
√

2

3

1

kg2
YM

∫

d2θ Trεijk (ΦiΦjΦk) +

√
2

3

1

kg2
YM

∫

d2θ̄ Trεijk
(

Φ̄iΦ̄jΦ̄k

)

. (5.1)

Here Φi, (Φ̄i) (i = 1, 2, 3) are (anti-)chiral superfields, V a vector superfield, Wα, W̄α̇ its

super field strengths, which are written in terms of component fields as

Φi = φi(y) +
√

2θψi(y) + θθFi(y),

Φ̄i = φ̄i(ȳ) +
√

2θ̄ψ̄i(ȳ) + θ̄θ̄F̄i(ȳ),

2−1Wα = −iλα +
[

δα
βD − i(σµν)α

βFµν

]

θβ + θ2(σµ)αα̇Dµλ̄α̇,

2−1W̄α̇ = −iλ̄α̇ +
[

εα̇β̇D + iεα̇γ̇(σ̄µν)γ̇ β̇Fµν

]

θ̄β̇ − εα̇β̇ θ̄2(σ̄µ)β̇αDµλα. (5.2)

We have followed the notation and convention in [32].
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Firstly we consider the (S,A)-type deformation. We can show that the interaction

terms (2.14) and (2.15) are regarded as the deformation of D-terms and F-terms:

L(1)
(S,A) + L(2)

(S,A)

1

2kg2
YM

∫

d4θ θ2θ̄2Tr
[(

Φ̄1C
(αβ)[12] + Φ̄2C

(αβ)[31] + Φ̄3C
(αβ)[14]

)

DαWβ

]

− 4

kg2
YM

∫

d2θ θ2Tr
[

DαΦ1DβΦ2C
(αβ)[14] + DαΦ2DβΦ3C

(αβ)[12] + DαΦ3DβΦ1C
(αβ)[13]

]

+

√
2

kg2
YM

∫

d2θ θ2Tr
[

(DαΦ1Wβ + Φ1DαWβ)C(αβ)[34] + (DαΦ2Wβ + Φ2DαWβ) C(αβ)[24]

+ (DαΦ3Wβ + Φ3DαWβ) C(αβ)[23]
]

+
4

kg2
YM

∫

d2θ θ2Tr
[

(Φ1C
µν[34] + Φ2C

µν[42] + Φ3C
µν[23])2

]

+
4

kg2
YM

∫

d2θ̄ θ̄2Tr
[

(Φ̄1C
µν[12] + Φ̄2C

µν[31] + Φ̄3C
µν[14])2

]

. (5.3)

Here we have used the relation

ϕ(2i−1)+4 =
1√
2

(

φi + φ̄i

)

, ϕ2i+4 =
i√
2

(

φi − φ̄i

)

. (5.4)

It is natural to think that this complicated expression is simplified if one uses N = 2

superspace formalism as in [16], which will be discussed elsewhere.

Next, we study the (A,S)-type deformation. In this case we have simple interpretation

of the Lagrangian in terms of deformation of gauge coupling constants and complex mass

parameters, which are functions on N = 1 superspace. To see this, let us consider generic

mass deformation of the N = 4 Lagrangian

LN=4
m = LN=4 +

1

2kg2
YM

∫

d2θ Tr
(

miΦ
2
i

)

+
1

2kg2
YM

∫

d2θ̄ Tr
(

m̄iΦ̄
2
i

)

. (5.5)

In terms of component fields, this is written as

LN=4
m = LN=4 +

1

kg2
YM

Tr

[

− |mi|2|φi|2 +
√

2εijkm̄iφ̄iφjφk

−
√

2εijkmiφiφ̄jφ̄k − 1

2
miψ

2
i − 1

2
m̄iψ̄

2
i

]

. (5.6)

The deformation terms (2.32) are written as

δL ≡ −1

6
MabcTr

[

ϕaϕbϕc

]

− 1

2
Tr

[

mABΛαAΛα
B + mABΛ̄α̇AΛ̄α̇

B

]

, (5.7)

where

Mabc = mAB(ΣaΣ̄bΣc)AB + mAB(Σ̄aΣbΣ̄c)AB , (5.8)

and mAB and mAB are 4 × 4 matrices, which are mAB = 0, mAB = −1
4C(AB) in the

(A,S)-type deformation2

2Here we assume the weight factor 2

3
for the amplitude 〈〈VHϕϕ

VϕVF〉〉, which could be determined by

evaluating the five-point amplitude 〈〈VϕVϕVϕVF 〉〉.
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When mAB and mAB take a diagonal form

mAB = diag(−m0,m1,m2,m3),

mAB = diag(−m̄0, m̄1, m̄2, m̄3) (5.9)

and m0 = m̄0 = 0, we find

δL ≡ −1

6
MabcTr

[

ϕaϕbϕc

]

− 1

2
Tr

[

mABΛαAΛα
B + mABΛ̄α̇AΛ̄α̇

B

]

= Tr

[√
2εijkm̄iφ̄iφjφk −

√
2εijkmiφiφ̄jφ̄k − 1

2
miψ

2
i − 1

2
m̄iψ̄

2
i

]

(5.10)

which gives the mass deformation LN=4
m .

If we turn on m0, m̄0, the Lagrangian contains the new terms

δL = Tr

[√
2

3
εijkm0(φiφjφk) −

√
2

3
εijkm̄0(φ̄iφ̄j φ̄k) −

1

2
m0λ

2 − 1

2
m̄0λ̄

2

]

. (5.11)

The first two terms are written as

− 1

kg2
YM

√
2

3
εijk

∫

d2θ Tr
[

em0θ2

ΦiΦjΦk

]

+
1

kg2
YM

√
2

3
εijk

∫

d2θ̄ Tr
[

em̄0θ̄2

Φ̄iΦ̄jΦ̄k

]

, (5.12)

which are regarded as the deformation of superpotential. The last two terms are regarded

as deformation of gauge coupling constant:

1

16kg2
YM

Tr

[
∫

d2θ e2m0θ2

W 2 +

∫

d2θ̄ e2m̄0 θ̄2

W̄ 2

]

. (5.13)

The Lagrangian (5.5) together with (5.12) and (5.13) becomes the (A,S)-type deformed

one.

5.2 N = 2 deformation

We can also write down the deformed N = 2 Lagrangians in N = 1 superspace. The

N = 2 super Yang-Mills theory in N = 1 superspace is given by

LN=2 =
1

kg2
YM

∫

d2θd2θ̄ Tr
[

Φ̄e2V Φe−2V
]

+
1

16kg2
YM

Tr

[
∫

d2θ W αWα +

∫

d2θ̄ W̄α̇W̄ α̇

]

,

(5.14)

where Φ and Φ̄ are chiral and anti-chiral superfields.

For the (S,A)-type deformation, the interaction terms (4.5) are written as

L(1)
(S,A) + L(2)

(S,A) = − 1

2kg2
YM

∫

d4θ θ2θ̄2Tr
[

Φ̄DαWβC̃αβ
]

+
1

2kg2
YM

∫

d2θ̄ θ̄2
[

Φ̄2C̃µνC̃µν

]

.

(5.15)

Therefore the (S,A)-type deformation in superspace is realized by introducing new inter-

action term in the D- and F-terms. It would be interesting to examine this deformation in
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terms of N = 2 superspace and its relation to the Ω-deformation of N = 2 super Yang-Mills

theory [16, 34].

We now discuss the (A,S)-type deformation. As in the N = 4 case, the (A,S)-type

deformation is realized by the deformation of coupling parameters. The mass deformation

of N = 2 super Yang-Mills theory is described by the Lagrangian

LN=2
m = LN=2 +

1

kg2
YM

Tr

[

1

2

∫

d2θ mΦ2 +
1

2

∫

d2θ̄ m̄Φ̄2

]

= LN=2 + Tr

[

−|m|2|φ|2 − 1

2
mψ2 − 1

2
m̄ψ̄2

]

. (5.16)

Here we have integrated out auxiliary fields of the superfields. If we diagonalize the back-

ground C(ij) = diag(m̄0, m̄), the (A,S)-type deformation term (4.13) is written as

L(1)
(A,S)

=
1

kg2
YM

Tr
[

−m̄0λ̄
2 − m̄ψ̄2

]

. (5.17)

The second term gives mass deformation term with m = 0. On the other hand, the first

term is written in terms of superspace valued gauge coupling as

1

16kg2
YM

∫

d2θ̄
[

e4m̄0θ̄2

W̄α̇W̄ α̇
]

. (5.18)

6. Conclusions and discussion

In this paper we studied the first and second order corrections from the constant R-R

3-form backgrounds to N = 2 and 4 super Yang-Mills theories, which are realized as the

low-energy effective field theories on the (fractional) D3-branes in type IIB superstring

theory. We argued the (S,A) and (A,S)-type R-R backgrounds F , which correspond to

the R-R (dual) 3-form field strengths in closed superstring backgrounds. We also used

the scaling condition, where (α′)1/2F is fixed in the zero-slope limit, to calculate the disk

amplitudes including a closed string R-R vertex operator.

The (S,A)-type background with this scaling condition is particularly useful to study

non-perturbative effects of super Yang-Mills theory. In fact, the instanton effective action

of N = 2 super Yang-Mills theory with the (S,A)-type deformation agrees with that in

Ω-background at the lowest order in the deformation parameter and gauge coupling con-

stant [15]. The Ω-background is an important setup to applying a localization formula to

the integration over the instanton moduli space [3, 16, 33, 34]. It is an interesting problem

to extend this correspondence to N = 4 theory or the (A,S)-type deformation and exam-

ine how the instanton moduli space and the low energy-effective action are deformed by

this background since the (S,A) and (A,S) deformed N = 4 super Yang-Mills theories can

accommodate both self-dual tensor and vector backgrounds simultaneously from the view-

point of N = 2 deformations. This is also important in order to study the nonperturbative

superstring vacua in the presence of R-R backgrounds.

We examined supersymmetry of the deformed N = 4 action and find that N = 4 su-

persymmetry is broken for generic deformation parameter. But for special case, a part of
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supersymmetries are unbroken and also deformed by the R-R background, which are similar

to the non(anti)commutative superspace. We argued the rank condition for deformation

parameter to determine unbroken supersymmetries. Deformations of N = 2 and N = 1

super Yang-Mills theories are described by the orbifold construction, and the number of

unbroken supersymmetries are determined by the rank condition for deformation parame-

ters. It would be interesting to study how the central charge of extended supersymmetry

algebra is deformed in these backgrounds.

The (S,A) and (A,S)-type deformations of action cannot be realized by the defor-

mation in non(anti)commutative superspace [10] since the spinor index structure of the

background is different from that of non(anti)commutative superspace. In the scaling con-

dition (α′)1/2F fixed, we find that the (A,S)-type deformation of N = 2 super Yang-Mills

theory is realized by allowing coupling constants to take values in N = 1 superspace. For

the (S,A) case, we need to introduce further interaction terms for superfields. But some

interaction terms take simple form when we use N = 2 extended superspace. Therefore it

would be interesting to examine this deformation as the geometry of N = 2 superspace, as

discussed in the case of Ω-background deformation [33, 34].
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